Evaluate
\frac{46}{3}\approx 15.333333333
Factor
\frac{2 \cdot 23}{3} = 15\frac{1}{3} = 15.333333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)230}\\\end{array}
Use the 1^{st} digit 2 from dividend 230
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)230}\\\end{array}
Since 2 is less than 15, use the next digit 3 from dividend 230 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)230}\\\end{array}
Use the 2^{nd} digit 3 from dividend 230
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)230}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}8\\\end{array}
Find closest multiple of 15 to 23. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 23 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)230}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 230
\begin{array}{l}\phantom{15)}015\phantom{6}\\15\overline{)230}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}80\\\phantom{15)}\underline{\phantom{9}75\phantom{}}\\\phantom{15)99}5\\\end{array}
Find closest multiple of 15 to 80. We see that 5 \times 15 = 75 is the nearest. Now subtract 75 from 80 to get reminder 5. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }5
Since 5 is less than 15, stop the division. The reminder is 5. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}