Evaluate
\frac{23}{14}\approx 1.642857143
Factor
\frac{23}{2 \cdot 7} = 1\frac{9}{14} = 1.6428571428571428
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)23}\\\end{array}
Use the 1^{st} digit 2 from dividend 23
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)23}\\\end{array}
Since 2 is less than 14, use the next digit 3 from dividend 23 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)23}\\\end{array}
Use the 2^{nd} digit 3 from dividend 23
\begin{array}{l}\phantom{14)}01\phantom{4}\\14\overline{)23}\\\phantom{14)}\underline{\phantom{}14\phantom{}}\\\phantom{14)9}9\\\end{array}
Find closest multiple of 14 to 23. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 23 to get reminder 9. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }9
Since 9 is less than 14, stop the division. The reminder is 9. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}