Evaluate
\frac{229}{48}\approx 4.770833333
Factor
\frac{229}{2 ^ {4} \cdot 3} = 4\frac{37}{48} = 4.770833333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)229}\\\end{array}
Use the 1^{st} digit 2 from dividend 229
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)229}\\\end{array}
Since 2 is less than 48, use the next digit 2 from dividend 229 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)229}\\\end{array}
Use the 2^{nd} digit 2 from dividend 229
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)229}\\\end{array}
Since 22 is less than 48, use the next digit 9 from dividend 229 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)229}\\\end{array}
Use the 3^{rd} digit 9 from dividend 229
\begin{array}{l}\phantom{48)}004\phantom{6}\\48\overline{)229}\\\phantom{48)}\underline{\phantom{}192\phantom{}}\\\phantom{48)9}37\\\end{array}
Find closest multiple of 48 to 229. We see that 4 \times 48 = 192 is the nearest. Now subtract 192 from 229 to get reminder 37. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }37
Since 37 is less than 48, stop the division. The reminder is 37. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}