Evaluate
\frac{22312452}{12301}\approx 1813.873018454
Factor
\frac{2 ^ {2} \cdot 3 \cdot 149 \cdot 12479}{12301} = 1813\frac{10739}{12301} = 1813.8730184537842
Share
Copied to clipboard
\begin{array}{l}\phantom{12301)}\phantom{1}\\12301\overline{)22312452}\\\end{array}
Use the 1^{st} digit 2 from dividend 22312452
\begin{array}{l}\phantom{12301)}0\phantom{2}\\12301\overline{)22312452}\\\end{array}
Since 2 is less than 12301, use the next digit 2 from dividend 22312452 and add 0 to the quotient
\begin{array}{l}\phantom{12301)}0\phantom{3}\\12301\overline{)22312452}\\\end{array}
Use the 2^{nd} digit 2 from dividend 22312452
\begin{array}{l}\phantom{12301)}00\phantom{4}\\12301\overline{)22312452}\\\end{array}
Since 22 is less than 12301, use the next digit 3 from dividend 22312452 and add 0 to the quotient
\begin{array}{l}\phantom{12301)}00\phantom{5}\\12301\overline{)22312452}\\\end{array}
Use the 3^{rd} digit 3 from dividend 22312452
\begin{array}{l}\phantom{12301)}000\phantom{6}\\12301\overline{)22312452}\\\end{array}
Since 223 is less than 12301, use the next digit 1 from dividend 22312452 and add 0 to the quotient
\begin{array}{l}\phantom{12301)}000\phantom{7}\\12301\overline{)22312452}\\\end{array}
Use the 4^{th} digit 1 from dividend 22312452
\begin{array}{l}\phantom{12301)}0000\phantom{8}\\12301\overline{)22312452}\\\end{array}
Since 2231 is less than 12301, use the next digit 2 from dividend 22312452 and add 0 to the quotient
\begin{array}{l}\phantom{12301)}0000\phantom{9}\\12301\overline{)22312452}\\\end{array}
Use the 5^{th} digit 2 from dividend 22312452
\begin{array}{l}\phantom{12301)}00001\phantom{10}\\12301\overline{)22312452}\\\phantom{12301)}\underline{\phantom{}12301\phantom{999}}\\\phantom{12301)}10011\\\end{array}
Find closest multiple of 12301 to 22312. We see that 1 \times 12301 = 12301 is the nearest. Now subtract 12301 from 22312 to get reminder 10011. Add 1 to quotient.
\begin{array}{l}\phantom{12301)}00001\phantom{11}\\12301\overline{)22312452}\\\phantom{12301)}\underline{\phantom{}12301\phantom{999}}\\\phantom{12301)}100114\\\end{array}
Use the 6^{th} digit 4 from dividend 22312452
\begin{array}{l}\phantom{12301)}000018\phantom{12}\\12301\overline{)22312452}\\\phantom{12301)}\underline{\phantom{}12301\phantom{999}}\\\phantom{12301)}100114\\\phantom{12301)}\underline{\phantom{9}98408\phantom{99}}\\\phantom{12301)99}1706\\\end{array}
Find closest multiple of 12301 to 100114. We see that 8 \times 12301 = 98408 is the nearest. Now subtract 98408 from 100114 to get reminder 1706. Add 8 to quotient.
\begin{array}{l}\phantom{12301)}000018\phantom{13}\\12301\overline{)22312452}\\\phantom{12301)}\underline{\phantom{}12301\phantom{999}}\\\phantom{12301)}100114\\\phantom{12301)}\underline{\phantom{9}98408\phantom{99}}\\\phantom{12301)99}17065\\\end{array}
Use the 7^{th} digit 5 from dividend 22312452
\begin{array}{l}\phantom{12301)}0000181\phantom{14}\\12301\overline{)22312452}\\\phantom{12301)}\underline{\phantom{}12301\phantom{999}}\\\phantom{12301)}100114\\\phantom{12301)}\underline{\phantom{9}98408\phantom{99}}\\\phantom{12301)99}17065\\\phantom{12301)}\underline{\phantom{99}12301\phantom{9}}\\\phantom{12301)999}4764\\\end{array}
Find closest multiple of 12301 to 17065. We see that 1 \times 12301 = 12301 is the nearest. Now subtract 12301 from 17065 to get reminder 4764. Add 1 to quotient.
\begin{array}{l}\phantom{12301)}0000181\phantom{15}\\12301\overline{)22312452}\\\phantom{12301)}\underline{\phantom{}12301\phantom{999}}\\\phantom{12301)}100114\\\phantom{12301)}\underline{\phantom{9}98408\phantom{99}}\\\phantom{12301)99}17065\\\phantom{12301)}\underline{\phantom{99}12301\phantom{9}}\\\phantom{12301)999}47642\\\end{array}
Use the 8^{th} digit 2 from dividend 22312452
\begin{array}{l}\phantom{12301)}00001813\phantom{16}\\12301\overline{)22312452}\\\phantom{12301)}\underline{\phantom{}12301\phantom{999}}\\\phantom{12301)}100114\\\phantom{12301)}\underline{\phantom{9}98408\phantom{99}}\\\phantom{12301)99}17065\\\phantom{12301)}\underline{\phantom{99}12301\phantom{9}}\\\phantom{12301)999}47642\\\phantom{12301)}\underline{\phantom{999}36903\phantom{}}\\\phantom{12301)999}10739\\\end{array}
Find closest multiple of 12301 to 47642. We see that 3 \times 12301 = 36903 is the nearest. Now subtract 36903 from 47642 to get reminder 10739. Add 3 to quotient.
\text{Quotient: }1813 \text{Reminder: }10739
Since 10739 is less than 12301, stop the division. The reminder is 10739. The topmost line 00001813 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1813.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}