Evaluate
\frac{221}{90}\approx 2.455555556
Factor
\frac{13 \cdot 17}{2 \cdot 3 ^ {2} \cdot 5} = 2\frac{41}{90} = 2.4555555555555557
Share
Copied to clipboard
\begin{array}{l}\phantom{90)}\phantom{1}\\90\overline{)221}\\\end{array}
Use the 1^{st} digit 2 from dividend 221
\begin{array}{l}\phantom{90)}0\phantom{2}\\90\overline{)221}\\\end{array}
Since 2 is less than 90, use the next digit 2 from dividend 221 and add 0 to the quotient
\begin{array}{l}\phantom{90)}0\phantom{3}\\90\overline{)221}\\\end{array}
Use the 2^{nd} digit 2 from dividend 221
\begin{array}{l}\phantom{90)}00\phantom{4}\\90\overline{)221}\\\end{array}
Since 22 is less than 90, use the next digit 1 from dividend 221 and add 0 to the quotient
\begin{array}{l}\phantom{90)}00\phantom{5}\\90\overline{)221}\\\end{array}
Use the 3^{rd} digit 1 from dividend 221
\begin{array}{l}\phantom{90)}002\phantom{6}\\90\overline{)221}\\\phantom{90)}\underline{\phantom{}180\phantom{}}\\\phantom{90)9}41\\\end{array}
Find closest multiple of 90 to 221. We see that 2 \times 90 = 180 is the nearest. Now subtract 180 from 221 to get reminder 41. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }41
Since 41 is less than 90, stop the division. The reminder is 41. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}