Solve for x
x = \frac{14 \sqrt{3}}{3} \approx 8.082903769
x = -\frac{14 \sqrt{3}}{3} \approx -8.082903769
Graph
Share
Copied to clipboard
\frac{1056}{7}x^{2}=9856
Multiply \frac{22}{7} and 48 to get \frac{1056}{7}.
x^{2}=9856\times \frac{7}{1056}
Multiply both sides by \frac{7}{1056}, the reciprocal of \frac{1056}{7}.
x^{2}=\frac{196}{3}
Multiply 9856 and \frac{7}{1056} to get \frac{196}{3}.
x=\frac{14\sqrt{3}}{3} x=-\frac{14\sqrt{3}}{3}
Take the square root of both sides of the equation.
\frac{1056}{7}x^{2}=9856
Multiply \frac{22}{7} and 48 to get \frac{1056}{7}.
\frac{1056}{7}x^{2}-9856=0
Subtract 9856 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1056}{7}\left(-9856\right)}}{2\times \frac{1056}{7}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1056}{7} for a, 0 for b, and -9856 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1056}{7}\left(-9856\right)}}{2\times \frac{1056}{7}}
Square 0.
x=\frac{0±\sqrt{-\frac{4224}{7}\left(-9856\right)}}{2\times \frac{1056}{7}}
Multiply -4 times \frac{1056}{7}.
x=\frac{0±\sqrt{5947392}}{2\times \frac{1056}{7}}
Multiply -\frac{4224}{7} times -9856.
x=\frac{0±1408\sqrt{3}}{2\times \frac{1056}{7}}
Take the square root of 5947392.
x=\frac{0±1408\sqrt{3}}{\frac{2112}{7}}
Multiply 2 times \frac{1056}{7}.
x=\frac{14\sqrt{3}}{3}
Now solve the equation x=\frac{0±1408\sqrt{3}}{\frac{2112}{7}} when ± is plus.
x=-\frac{14\sqrt{3}}{3}
Now solve the equation x=\frac{0±1408\sqrt{3}}{\frac{2112}{7}} when ± is minus.
x=\frac{14\sqrt{3}}{3} x=-\frac{14\sqrt{3}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}