Solve for h
h=-\frac{63}{442}\approx -0.142533937
Share
Copied to clipboard
2^{2}h-15^{2}h=99\times \frac{7}{22}
Multiply both sides by \frac{7}{22}, the reciprocal of \frac{22}{7}.
2^{2}h-15^{2}h=\frac{99\times 7}{22}
Express 99\times \frac{7}{22} as a single fraction.
2^{2}h-15^{2}h=\frac{693}{22}
Multiply 99 and 7 to get 693.
2^{2}h-15^{2}h=\frac{63}{2}
Reduce the fraction \frac{693}{22} to lowest terms by extracting and canceling out 11.
4h-15^{2}h=\frac{63}{2}
Calculate 2 to the power of 2 and get 4.
4h-225h=\frac{63}{2}
Calculate 15 to the power of 2 and get 225.
-221h=\frac{63}{2}
Combine 4h and -225h to get -221h.
h=\frac{\frac{63}{2}}{-221}
Divide both sides by -221.
h=\frac{63}{2\left(-221\right)}
Express \frac{\frac{63}{2}}{-221} as a single fraction.
h=\frac{63}{-442}
Multiply 2 and -221 to get -442.
h=-\frac{63}{442}
Fraction \frac{63}{-442} can be rewritten as -\frac{63}{442} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}