Solve for h
h=18
Share
Copied to clipboard
2^{2}h-1.5^{2}h=99\times \frac{7}{22}
Multiply both sides by \frac{7}{22}, the reciprocal of \frac{22}{7}.
2^{2}h-1.5^{2}h=\frac{99\times 7}{22}
Express 99\times \frac{7}{22} as a single fraction.
2^{2}h-1.5^{2}h=\frac{693}{22}
Multiply 99 and 7 to get 693.
2^{2}h-1.5^{2}h=\frac{63}{2}
Reduce the fraction \frac{693}{22} to lowest terms by extracting and canceling out 11.
4h-1.5^{2}h=\frac{63}{2}
Calculate 2 to the power of 2 and get 4.
4h-2.25h=\frac{63}{2}
Calculate 1.5 to the power of 2 and get 2.25.
1.75h=\frac{63}{2}
Combine 4h and -2.25h to get 1.75h.
h=\frac{\frac{63}{2}}{1.75}
Divide both sides by 1.75.
h=\frac{63}{2\times 1.75}
Express \frac{\frac{63}{2}}{1.75} as a single fraction.
h=\frac{63}{3.5}
Multiply 2 and 1.75 to get 3.5.
h=\frac{630}{35}
Expand \frac{63}{3.5} by multiplying both numerator and the denominator by 10.
h=18
Divide 630 by 35 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}