Solve for x
x = \frac{2 \sqrt{3190} + 220}{81} \approx 4.110619382
x = \frac{220 - 2 \sqrt{3190}}{81} \approx 1.321479383
Graph
Share
Copied to clipboard
\left(x-2\right)^{2}\times 22-x^{2}\times 5.8=0
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x^{2}\left(x-2\right)^{2}, the least common multiple of x^{2},\left(2-x\right)^{2}.
\left(x^{2}-4x+4\right)\times 22-x^{2}\times 5.8=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
22x^{2}-88x+88-x^{2}\times 5.8=0
Use the distributive property to multiply x^{2}-4x+4 by 22.
22x^{2}-88x+88-5.8x^{2}=0
Multiply -1 and 5.8 to get -5.8.
16.2x^{2}-88x+88=0
Combine 22x^{2} and -5.8x^{2} to get 16.2x^{2}.
x=\frac{-\left(-88\right)±\sqrt{\left(-88\right)^{2}-4\times 16.2\times 88}}{2\times 16.2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16.2 for a, -88 for b, and 88 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-88\right)±\sqrt{7744-4\times 16.2\times 88}}{2\times 16.2}
Square -88.
x=\frac{-\left(-88\right)±\sqrt{7744-64.8\times 88}}{2\times 16.2}
Multiply -4 times 16.2.
x=\frac{-\left(-88\right)±\sqrt{7744-5702.4}}{2\times 16.2}
Multiply -64.8 times 88.
x=\frac{-\left(-88\right)±\sqrt{2041.6}}{2\times 16.2}
Add 7744 to -5702.4.
x=\frac{-\left(-88\right)±\frac{4\sqrt{3190}}{5}}{2\times 16.2}
Take the square root of 2041.6.
x=\frac{88±\frac{4\sqrt{3190}}{5}}{2\times 16.2}
The opposite of -88 is 88.
x=\frac{88±\frac{4\sqrt{3190}}{5}}{32.4}
Multiply 2 times 16.2.
x=\frac{\frac{4\sqrt{3190}}{5}+88}{32.4}
Now solve the equation x=\frac{88±\frac{4\sqrt{3190}}{5}}{32.4} when ± is plus. Add 88 to \frac{4\sqrt{3190}}{5}.
x=\frac{2\sqrt{3190}+220}{81}
Divide 88+\frac{4\sqrt{3190}}{5} by 32.4 by multiplying 88+\frac{4\sqrt{3190}}{5} by the reciprocal of 32.4.
x=\frac{-\frac{4\sqrt{3190}}{5}+88}{32.4}
Now solve the equation x=\frac{88±\frac{4\sqrt{3190}}{5}}{32.4} when ± is minus. Subtract \frac{4\sqrt{3190}}{5} from 88.
x=\frac{220-2\sqrt{3190}}{81}
Divide 88-\frac{4\sqrt{3190}}{5} by 32.4 by multiplying 88-\frac{4\sqrt{3190}}{5} by the reciprocal of 32.4.
x=\frac{2\sqrt{3190}+220}{81} x=\frac{220-2\sqrt{3190}}{81}
The equation is now solved.
\left(x-2\right)^{2}\times 22-x^{2}\times 5.8=0
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x^{2}\left(x-2\right)^{2}, the least common multiple of x^{2},\left(2-x\right)^{2}.
\left(x^{2}-4x+4\right)\times 22-x^{2}\times 5.8=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
22x^{2}-88x+88-x^{2}\times 5.8=0
Use the distributive property to multiply x^{2}-4x+4 by 22.
22x^{2}-88x-x^{2}\times 5.8=-88
Subtract 88 from both sides. Anything subtracted from zero gives its negation.
22x^{2}-88x-5.8x^{2}=-88
Multiply -1 and 5.8 to get -5.8.
16.2x^{2}-88x=-88
Combine 22x^{2} and -5.8x^{2} to get 16.2x^{2}.
\frac{16.2x^{2}-88x}{16.2}=-\frac{88}{16.2}
Divide both sides of the equation by 16.2, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{88}{16.2}\right)x=-\frac{88}{16.2}
Dividing by 16.2 undoes the multiplication by 16.2.
x^{2}-\frac{440}{81}x=-\frac{88}{16.2}
Divide -88 by 16.2 by multiplying -88 by the reciprocal of 16.2.
x^{2}-\frac{440}{81}x=-\frac{440}{81}
Divide -88 by 16.2 by multiplying -88 by the reciprocal of 16.2.
x^{2}-\frac{440}{81}x+\left(-\frac{220}{81}\right)^{2}=-\frac{440}{81}+\left(-\frac{220}{81}\right)^{2}
Divide -\frac{440}{81}, the coefficient of the x term, by 2 to get -\frac{220}{81}. Then add the square of -\frac{220}{81} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{440}{81}x+\frac{48400}{6561}=-\frac{440}{81}+\frac{48400}{6561}
Square -\frac{220}{81} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{440}{81}x+\frac{48400}{6561}=\frac{12760}{6561}
Add -\frac{440}{81} to \frac{48400}{6561} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{220}{81}\right)^{2}=\frac{12760}{6561}
Factor x^{2}-\frac{440}{81}x+\frac{48400}{6561}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{220}{81}\right)^{2}}=\sqrt{\frac{12760}{6561}}
Take the square root of both sides of the equation.
x-\frac{220}{81}=\frac{2\sqrt{3190}}{81} x-\frac{220}{81}=-\frac{2\sqrt{3190}}{81}
Simplify.
x=\frac{2\sqrt{3190}+220}{81} x=\frac{220-2\sqrt{3190}}{81}
Add \frac{220}{81} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}