Evaluate
-\frac{2507004416\sqrt{419528004333709}}{419528004333709}\approx -122.398084391
Share
Copied to clipboard
\frac{21115.07-\frac{25323425}{12}}{\sqrt{\left(720223-\frac{92.93^{2}}{12}\right)\left(619207-\frac{2725^{2}}{12}\right)}}
Multiply 9293 and 2725 to get 25323425.
\frac{\frac{2111507}{100}-\frac{25323425}{12}}{\sqrt{\left(720223-\frac{92.93^{2}}{12}\right)\left(619207-\frac{2725^{2}}{12}\right)}}
Convert decimal number 21115.07 to fraction \frac{2111507}{100}.
\frac{\frac{6334521}{300}-\frac{633085625}{300}}{\sqrt{\left(720223-\frac{92.93^{2}}{12}\right)\left(619207-\frac{2725^{2}}{12}\right)}}
Least common multiple of 100 and 12 is 300. Convert \frac{2111507}{100} and \frac{25323425}{12} to fractions with denominator 300.
\frac{\frac{6334521-633085625}{300}}{\sqrt{\left(720223-\frac{92.93^{2}}{12}\right)\left(619207-\frac{2725^{2}}{12}\right)}}
Since \frac{6334521}{300} and \frac{633085625}{300} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-626751104}{300}}{\sqrt{\left(720223-\frac{92.93^{2}}{12}\right)\left(619207-\frac{2725^{2}}{12}\right)}}
Subtract 633085625 from 6334521 to get -626751104.
\frac{-\frac{156687776}{75}}{\sqrt{\left(720223-\frac{92.93^{2}}{12}\right)\left(619207-\frac{2725^{2}}{12}\right)}}
Reduce the fraction \frac{-626751104}{300} to lowest terms by extracting and canceling out 4.
\frac{-\frac{156687776}{75}}{\sqrt{\left(720223-\frac{8635.9849}{12}\right)\left(619207-\frac{2725^{2}}{12}\right)}}
Calculate 92.93 to the power of 2 and get 8635.9849.
\frac{-\frac{156687776}{75}}{\sqrt{\left(720223-\frac{86359849}{120000}\right)\left(619207-\frac{2725^{2}}{12}\right)}}
Expand \frac{8635.9849}{12} by multiplying both numerator and the denominator by 10000.
\frac{-\frac{156687776}{75}}{\sqrt{\left(\frac{86426760000}{120000}-\frac{86359849}{120000}\right)\left(619207-\frac{2725^{2}}{12}\right)}}
Convert 720223 to fraction \frac{86426760000}{120000}.
\frac{-\frac{156687776}{75}}{\sqrt{\frac{86426760000-86359849}{120000}\left(619207-\frac{2725^{2}}{12}\right)}}
Since \frac{86426760000}{120000} and \frac{86359849}{120000} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{156687776}{75}}{\sqrt{\frac{86340400151}{120000}\left(619207-\frac{2725^{2}}{12}\right)}}
Subtract 86359849 from 86426760000 to get 86340400151.
\frac{-\frac{156687776}{75}}{\sqrt{\frac{86340400151}{120000}\left(619207-\frac{7425625}{12}\right)}}
Calculate 2725 to the power of 2 and get 7425625.
\frac{-\frac{156687776}{75}}{\sqrt{\frac{86340400151}{120000}\left(\frac{7430484}{12}-\frac{7425625}{12}\right)}}
Convert 619207 to fraction \frac{7430484}{12}.
\frac{-\frac{156687776}{75}}{\sqrt{\frac{86340400151}{120000}\times \frac{7430484-7425625}{12}}}
Since \frac{7430484}{12} and \frac{7425625}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{156687776}{75}}{\sqrt{\frac{86340400151}{120000}\times \frac{4859}{12}}}
Subtract 7425625 from 7430484 to get 4859.
\frac{-\frac{156687776}{75}}{\sqrt{\frac{86340400151\times 4859}{120000\times 12}}}
Multiply \frac{86340400151}{120000} times \frac{4859}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{156687776}{75}}{\sqrt{\frac{419528004333709}{1440000}}}
Do the multiplications in the fraction \frac{86340400151\times 4859}{120000\times 12}.
\frac{-\frac{156687776}{75}}{\frac{\sqrt{419528004333709}}{\sqrt{1440000}}}
Rewrite the square root of the division \sqrt{\frac{419528004333709}{1440000}} as the division of square roots \frac{\sqrt{419528004333709}}{\sqrt{1440000}}.
\frac{-\frac{156687776}{75}}{\frac{\sqrt{419528004333709}}{1200}}
Calculate the square root of 1440000 and get 1200.
\frac{-156687776\times 1200}{75\sqrt{419528004333709}}
Divide -\frac{156687776}{75} by \frac{\sqrt{419528004333709}}{1200} by multiplying -\frac{156687776}{75} by the reciprocal of \frac{\sqrt{419528004333709}}{1200}.
\frac{-156687776\times 16}{\sqrt{419528004333709}}
Cancel out 75 in both numerator and denominator.
\frac{-156687776\times 16\sqrt{419528004333709}}{\left(\sqrt{419528004333709}\right)^{2}}
Rationalize the denominator of \frac{-156687776\times 16}{\sqrt{419528004333709}} by multiplying numerator and denominator by \sqrt{419528004333709}.
\frac{-156687776\times 16\sqrt{419528004333709}}{419528004333709}
The square of \sqrt{419528004333709} is 419528004333709.
\frac{-2507004416\sqrt{419528004333709}}{419528004333709}
Multiply -156687776 and 16 to get -2507004416.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}