Evaluate
\frac{207}{13}\approx 15.923076923
Factor
\frac{3 ^ {2} \cdot 23}{13} = 15\frac{12}{13} = 15.923076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)207}\\\end{array}
Use the 1^{st} digit 2 from dividend 207
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)207}\\\end{array}
Since 2 is less than 13, use the next digit 0 from dividend 207 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)207}\\\end{array}
Use the 2^{nd} digit 0 from dividend 207
\begin{array}{l}\phantom{13)}01\phantom{4}\\13\overline{)207}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}7\\\end{array}
Find closest multiple of 13 to 20. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 20 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{13)}01\phantom{5}\\13\overline{)207}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}77\\\end{array}
Use the 3^{rd} digit 7 from dividend 207
\begin{array}{l}\phantom{13)}015\phantom{6}\\13\overline{)207}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}77\\\phantom{13)}\underline{\phantom{9}65\phantom{}}\\\phantom{13)9}12\\\end{array}
Find closest multiple of 13 to 77. We see that 5 \times 13 = 65 is the nearest. Now subtract 65 from 77 to get reminder 12. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }12
Since 12 is less than 13, stop the division. The reminder is 12. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}