Evaluate
\frac{125}{64}=1.953125
Factor
\frac{5 ^ {3}}{2 ^ {6}} = 1\frac{61}{64} = 1.953125
Share
Copied to clipboard
\begin{array}{l}\phantom{1024)}\phantom{1}\\1024\overline{)2000}\\\end{array}
Use the 1^{st} digit 2 from dividend 2000
\begin{array}{l}\phantom{1024)}0\phantom{2}\\1024\overline{)2000}\\\end{array}
Since 2 is less than 1024, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{1024)}0\phantom{3}\\1024\overline{)2000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2000
\begin{array}{l}\phantom{1024)}00\phantom{4}\\1024\overline{)2000}\\\end{array}
Since 20 is less than 1024, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{1024)}00\phantom{5}\\1024\overline{)2000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2000
\begin{array}{l}\phantom{1024)}000\phantom{6}\\1024\overline{)2000}\\\end{array}
Since 200 is less than 1024, use the next digit 0 from dividend 2000 and add 0 to the quotient
\begin{array}{l}\phantom{1024)}000\phantom{7}\\1024\overline{)2000}\\\end{array}
Use the 4^{th} digit 0 from dividend 2000
\begin{array}{l}\phantom{1024)}0001\phantom{8}\\1024\overline{)2000}\\\phantom{1024)}\underline{\phantom{}1024\phantom{}}\\\phantom{1024)9}976\\\end{array}
Find closest multiple of 1024 to 2000. We see that 1 \times 1024 = 1024 is the nearest. Now subtract 1024 from 2000 to get reminder 976. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }976
Since 976 is less than 1024, stop the division. The reminder is 976. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}