Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+30\right)\times 200+2x\left(x+15\right)\left(-\frac{1}{2}\right)=2x\times 200
Variable x cannot be equal to any of the values -15,0 since division by zero is not defined. Multiply both sides of the equation by 2x\left(x+15\right), the least common multiple of x,2,x+15.
400x+6000+2x\left(x+15\right)\left(-\frac{1}{2}\right)=2x\times 200
Use the distributive property to multiply 2x+30 by 200.
400x+6000-x\left(x+15\right)=2x\times 200
Multiply 2 and -\frac{1}{2} to get -1.
400x+6000-x^{2}-15x=2x\times 200
Use the distributive property to multiply -x by x+15.
385x+6000-x^{2}=2x\times 200
Combine 400x and -15x to get 385x.
385x+6000-x^{2}=400x
Multiply 2 and 200 to get 400.
385x+6000-x^{2}-400x=0
Subtract 400x from both sides.
-15x+6000-x^{2}=0
Combine 385x and -400x to get -15x.
-x^{2}-15x+6000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-1\right)\times 6000}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -15 for b, and 6000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-1\right)\times 6000}}{2\left(-1\right)}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225+4\times 6000}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-15\right)±\sqrt{225+24000}}{2\left(-1\right)}
Multiply 4 times 6000.
x=\frac{-\left(-15\right)±\sqrt{24225}}{2\left(-1\right)}
Add 225 to 24000.
x=\frac{-\left(-15\right)±5\sqrt{969}}{2\left(-1\right)}
Take the square root of 24225.
x=\frac{15±5\sqrt{969}}{2\left(-1\right)}
The opposite of -15 is 15.
x=\frac{15±5\sqrt{969}}{-2}
Multiply 2 times -1.
x=\frac{5\sqrt{969}+15}{-2}
Now solve the equation x=\frac{15±5\sqrt{969}}{-2} when ± is plus. Add 15 to 5\sqrt{969}.
x=\frac{-5\sqrt{969}-15}{2}
Divide 15+5\sqrt{969} by -2.
x=\frac{15-5\sqrt{969}}{-2}
Now solve the equation x=\frac{15±5\sqrt{969}}{-2} when ± is minus. Subtract 5\sqrt{969} from 15.
x=\frac{5\sqrt{969}-15}{2}
Divide 15-5\sqrt{969} by -2.
x=\frac{-5\sqrt{969}-15}{2} x=\frac{5\sqrt{969}-15}{2}
The equation is now solved.
\left(2x+30\right)\times 200+2x\left(x+15\right)\left(-\frac{1}{2}\right)=2x\times 200
Variable x cannot be equal to any of the values -15,0 since division by zero is not defined. Multiply both sides of the equation by 2x\left(x+15\right), the least common multiple of x,2,x+15.
400x+6000+2x\left(x+15\right)\left(-\frac{1}{2}\right)=2x\times 200
Use the distributive property to multiply 2x+30 by 200.
400x+6000-x\left(x+15\right)=2x\times 200
Multiply 2 and -\frac{1}{2} to get -1.
400x+6000-x^{2}-15x=2x\times 200
Use the distributive property to multiply -x by x+15.
385x+6000-x^{2}=2x\times 200
Combine 400x and -15x to get 385x.
385x+6000-x^{2}=400x
Multiply 2 and 200 to get 400.
385x+6000-x^{2}-400x=0
Subtract 400x from both sides.
-15x+6000-x^{2}=0
Combine 385x and -400x to get -15x.
-15x-x^{2}=-6000
Subtract 6000 from both sides. Anything subtracted from zero gives its negation.
-x^{2}-15x=-6000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-15x}{-1}=-\frac{6000}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{15}{-1}\right)x=-\frac{6000}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+15x=-\frac{6000}{-1}
Divide -15 by -1.
x^{2}+15x=6000
Divide -6000 by -1.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=6000+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=6000+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=\frac{24225}{4}
Add 6000 to \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{24225}{4}
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{24225}{4}}
Take the square root of both sides of the equation.
x+\frac{15}{2}=\frac{5\sqrt{969}}{2} x+\frac{15}{2}=-\frac{5\sqrt{969}}{2}
Simplify.
x=\frac{5\sqrt{969}-15}{2} x=\frac{-5\sqrt{969}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.