Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(20-30i\right)\left(30+30i\right)}{\left(30-30i\right)\left(30+30i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 30+30i.
\frac{\left(20-30i\right)\left(30+30i\right)}{30^{2}-30^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(20-30i\right)\left(30+30i\right)}{1800}
By definition, i^{2} is -1. Calculate the denominator.
\frac{20\times 30+20\times \left(30i\right)-30i\times 30-30\times 30i^{2}}{1800}
Multiply complex numbers 20-30i and 30+30i like you multiply binomials.
\frac{20\times 30+20\times \left(30i\right)-30i\times 30-30\times 30\left(-1\right)}{1800}
By definition, i^{2} is -1.
\frac{600+600i-900i+900}{1800}
Do the multiplications in 20\times 30+20\times \left(30i\right)-30i\times 30-30\times 30\left(-1\right).
\frac{600+900+\left(600-900\right)i}{1800}
Combine the real and imaginary parts in 600+600i-900i+900.
\frac{1500-300i}{1800}
Do the additions in 600+900+\left(600-900\right)i.
\frac{5}{6}-\frac{1}{6}i
Divide 1500-300i by 1800 to get \frac{5}{6}-\frac{1}{6}i.
Re(\frac{\left(20-30i\right)\left(30+30i\right)}{\left(30-30i\right)\left(30+30i\right)})
Multiply both numerator and denominator of \frac{20-30i}{30-30i} by the complex conjugate of the denominator, 30+30i.
Re(\frac{\left(20-30i\right)\left(30+30i\right)}{30^{2}-30^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(20-30i\right)\left(30+30i\right)}{1800})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{20\times 30+20\times \left(30i\right)-30i\times 30-30\times 30i^{2}}{1800})
Multiply complex numbers 20-30i and 30+30i like you multiply binomials.
Re(\frac{20\times 30+20\times \left(30i\right)-30i\times 30-30\times 30\left(-1\right)}{1800})
By definition, i^{2} is -1.
Re(\frac{600+600i-900i+900}{1800})
Do the multiplications in 20\times 30+20\times \left(30i\right)-30i\times 30-30\times 30\left(-1\right).
Re(\frac{600+900+\left(600-900\right)i}{1800})
Combine the real and imaginary parts in 600+600i-900i+900.
Re(\frac{1500-300i}{1800})
Do the additions in 600+900+\left(600-900\right)i.
Re(\frac{5}{6}-\frac{1}{6}i)
Divide 1500-300i by 1800 to get \frac{5}{6}-\frac{1}{6}i.
\frac{5}{6}
The real part of \frac{5}{6}-\frac{1}{6}i is \frac{5}{6}.