Evaluate
\frac{191488}{4953}\approx 38.661013527
Factor
\frac{11 \cdot 17 \cdot 2 ^ {10}}{3 \cdot 13 \cdot 127} = 38\frac{3274}{4953} = 38.66101352715526
Share
Copied to clipboard
\frac{20\times \frac{1870}{15}\times 0.8\left(4-0.8\right)}{168.3-\left(4-0.8\right)}
Expand \frac{187}{1.5} by multiplying both numerator and the denominator by 10.
\frac{20\times \frac{374}{3}\times 0.8\left(4-0.8\right)}{168.3-\left(4-0.8\right)}
Reduce the fraction \frac{1870}{15} to lowest terms by extracting and canceling out 5.
\frac{\frac{20\times 374}{3}\times 0.8\left(4-0.8\right)}{168.3-\left(4-0.8\right)}
Express 20\times \frac{374}{3} as a single fraction.
\frac{\frac{7480}{3}\times 0.8\left(4-0.8\right)}{168.3-\left(4-0.8\right)}
Multiply 20 and 374 to get 7480.
\frac{\frac{7480}{3}\times \frac{4}{5}\left(4-0.8\right)}{168.3-\left(4-0.8\right)}
Convert decimal number 0.8 to fraction \frac{8}{10}. Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{7480\times 4}{3\times 5}\left(4-0.8\right)}{168.3-\left(4-0.8\right)}
Multiply \frac{7480}{3} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{29920}{15}\left(4-0.8\right)}{168.3-\left(4-0.8\right)}
Do the multiplications in the fraction \frac{7480\times 4}{3\times 5}.
\frac{\frac{5984}{3}\left(4-0.8\right)}{168.3-\left(4-0.8\right)}
Reduce the fraction \frac{29920}{15} to lowest terms by extracting and canceling out 5.
\frac{\frac{5984}{3}\times 3.2}{168.3-\left(4-0.8\right)}
Subtract 0.8 from 4 to get 3.2.
\frac{\frac{5984}{3}\times \frac{16}{5}}{168.3-\left(4-0.8\right)}
Convert decimal number 3.2 to fraction \frac{32}{10}. Reduce the fraction \frac{32}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{5984\times 16}{3\times 5}}{168.3-\left(4-0.8\right)}
Multiply \frac{5984}{3} times \frac{16}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{95744}{15}}{168.3-\left(4-0.8\right)}
Do the multiplications in the fraction \frac{5984\times 16}{3\times 5}.
\frac{\frac{95744}{15}}{168.3-3.2}
Subtract 0.8 from 4 to get 3.2.
\frac{\frac{95744}{15}}{165.1}
Subtract 3.2 from 168.3 to get 165.1.
\frac{95744}{15\times 165.1}
Express \frac{\frac{95744}{15}}{165.1} as a single fraction.
\frac{95744}{2476.5}
Multiply 15 and 165.1 to get 2476.5.
\frac{957440}{24765}
Expand \frac{95744}{2476.5} by multiplying both numerator and the denominator by 10.
\frac{191488}{4953}
Reduce the fraction \frac{957440}{24765} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}