Solve for x
x = \frac{40}{3} = 13\frac{1}{3} \approx 13.333333333
Graph
Share
Copied to clipboard
\frac{20}{20+x}=\frac{0.6}{1}
Divide both sides by 1.
\frac{20}{20+x}=\frac{6}{10}
Expand \frac{0.6}{1} by multiplying both numerator and the denominator by 10.
\frac{20}{20+x}=\frac{3}{5}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
5\times 20=3\left(x+20\right)
Variable x cannot be equal to -20 since division by zero is not defined. Multiply both sides of the equation by 5\left(x+20\right), the least common multiple of 20+x,5.
100=3\left(x+20\right)
Multiply 5 and 20 to get 100.
100=3x+60
Use the distributive property to multiply 3 by x+20.
3x+60=100
Swap sides so that all variable terms are on the left hand side.
3x=100-60
Subtract 60 from both sides.
3x=40
Subtract 60 from 100 to get 40.
x=\frac{40}{3}
Divide both sides by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}