Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{20\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}
Rationalize the denominator of \frac{20}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{20\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{20\left(\sqrt{3}+1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{20\left(\sqrt{3}+1\right)}{2}
Subtract 1 from 3 to get 2.
10\left(\sqrt{3}+1\right)
Divide 20\left(\sqrt{3}+1\right) by 2 to get 10\left(\sqrt{3}+1\right).
10\sqrt{3}+10
Use the distributive property to multiply 10 by \sqrt{3}+1.