Solve for x
x=1.8
Graph
Share
Copied to clipboard
\frac{2.8-x}{10000}=\frac{3-x}{1.2\times 10^{4}}
Calculate 10 to the power of 4 and get 10000.
\frac{2.8-x}{10000}=\frac{3-x}{1.2\times 10000}
Calculate 10 to the power of 4 and get 10000.
\frac{2.8-x}{10000}=\frac{3-x}{12000}
Multiply 1.2 and 10000 to get 12000.
0.00028-\frac{1}{10000}x=\frac{3-x}{12000}
Divide each term of 2.8-x by 10000 to get 0.00028-\frac{1}{10000}x.
0.00028-\frac{1}{10000}x=\frac{1}{4000}-\frac{1}{12000}x
Divide each term of 3-x by 12000 to get \frac{1}{4000}-\frac{1}{12000}x.
0.00028-\frac{1}{10000}x+\frac{1}{12000}x=\frac{1}{4000}
Add \frac{1}{12000}x to both sides.
0.00028-\frac{1}{60000}x=\frac{1}{4000}
Combine -\frac{1}{10000}x and \frac{1}{12000}x to get -\frac{1}{60000}x.
-\frac{1}{60000}x=\frac{1}{4000}-0.00028
Subtract 0.00028 from both sides.
-\frac{1}{60000}x=\frac{1}{4000}-\frac{7}{25000}
Convert decimal number 0.00028 to fraction \frac{28}{100000}. Reduce the fraction \frac{28}{100000} to lowest terms by extracting and canceling out 4.
-\frac{1}{60000}x=\frac{25}{100000}-\frac{28}{100000}
Least common multiple of 4000 and 25000 is 100000. Convert \frac{1}{4000} and \frac{7}{25000} to fractions with denominator 100000.
-\frac{1}{60000}x=\frac{25-28}{100000}
Since \frac{25}{100000} and \frac{28}{100000} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{60000}x=-\frac{3}{100000}
Subtract 28 from 25 to get -3.
x=-\frac{3}{100000}\left(-60000\right)
Multiply both sides by -60000, the reciprocal of -\frac{1}{60000}.
x=\frac{-3\left(-60000\right)}{100000}
Express -\frac{3}{100000}\left(-60000\right) as a single fraction.
x=\frac{180000}{100000}
Multiply -3 and -60000 to get 180000.
x=\frac{9}{5}
Reduce the fraction \frac{180000}{100000} to lowest terms by extracting and canceling out 20000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}