Solve for x
x = \frac{40}{13} = 3\frac{1}{13} \approx 3.076923077
Graph
Share
Copied to clipboard
2.5+x=x\times \frac{5.8}{3.2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2.5+x=x\times \frac{58}{32}
Expand \frac{5.8}{3.2} by multiplying both numerator and the denominator by 10.
2.5+x=x\times \frac{29}{16}
Reduce the fraction \frac{58}{32} to lowest terms by extracting and canceling out 2.
2.5+x-x\times \frac{29}{16}=0
Subtract x\times \frac{29}{16} from both sides.
2.5-\frac{13}{16}x=0
Combine x and -x\times \frac{29}{16} to get -\frac{13}{16}x.
-\frac{13}{16}x=-2.5
Subtract 2.5 from both sides. Anything subtracted from zero gives its negation.
x=-2.5\left(-\frac{16}{13}\right)
Multiply both sides by -\frac{16}{13}, the reciprocal of -\frac{13}{16}.
x=-\frac{5}{2}\left(-\frac{16}{13}\right)
Convert decimal number -2.5 to fraction -\frac{25}{10}. Reduce the fraction -\frac{25}{10} to lowest terms by extracting and canceling out 5.
x=\frac{-5\left(-16\right)}{2\times 13}
Multiply -\frac{5}{2} times -\frac{16}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{80}{26}
Do the multiplications in the fraction \frac{-5\left(-16\right)}{2\times 13}.
x=\frac{40}{13}
Reduce the fraction \frac{80}{26} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}