\frac{ 2.5 }{ x } = \frac{ 3 }{ 20 } \div 24 \%
Solve for x
x=4
Graph
Share
Copied to clipboard
2.5=\frac{25}{6}x\times \frac{3}{20}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2.5=\frac{25\times 3}{6\times 20}x
Multiply \frac{25}{6} times \frac{3}{20} by multiplying numerator times numerator and denominator times denominator.
2.5=\frac{75}{120}x
Do the multiplications in the fraction \frac{25\times 3}{6\times 20}.
2.5=\frac{5}{8}x
Reduce the fraction \frac{75}{120} to lowest terms by extracting and canceling out 15.
\frac{5}{8}x=2.5
Swap sides so that all variable terms are on the left hand side.
x=2.5\times \frac{8}{5}
Multiply both sides by \frac{8}{5}, the reciprocal of \frac{5}{8}.
x=\frac{5}{2}\times \frac{8}{5}
Convert decimal number 2.5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
x=\frac{5\times 8}{2\times 5}
Multiply \frac{5}{2} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{8}{2}
Cancel out 5 in both numerator and denominator.
x=4
Divide 8 by 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}