Solve for x
x = \frac{\sqrt{70} + 4}{3} \approx 4.122200088
x=\frac{4-\sqrt{70}}{3}\approx -1.455533422
Graph
Share
Copied to clipboard
\left(x-3\right)\left(2-x\right)=-\left(2+x\right)\left(x+3\right)+\left(x-3\right)\left(x+2\right)\times 6
Variable x cannot be equal to any of the values -2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+2\right), the least common multiple of x+2,3-x.
5x-x^{2}-6=-\left(2+x\right)\left(x+3\right)+\left(x-3\right)\left(x+2\right)\times 6
Use the distributive property to multiply x-3 by 2-x and combine like terms.
5x-x^{2}-6=\left(-2-x\right)\left(x+3\right)+\left(x-3\right)\left(x+2\right)\times 6
Use the distributive property to multiply -1 by 2+x.
5x-x^{2}-6=-5x-6-x^{2}+\left(x-3\right)\left(x+2\right)\times 6
Use the distributive property to multiply -2-x by x+3 and combine like terms.
5x-x^{2}-6=-5x-6-x^{2}+\left(x^{2}-x-6\right)\times 6
Use the distributive property to multiply x-3 by x+2 and combine like terms.
5x-x^{2}-6=-5x-6-x^{2}+6x^{2}-6x-36
Use the distributive property to multiply x^{2}-x-6 by 6.
5x-x^{2}-6=-5x-6+5x^{2}-6x-36
Combine -x^{2} and 6x^{2} to get 5x^{2}.
5x-x^{2}-6=-11x-6+5x^{2}-36
Combine -5x and -6x to get -11x.
5x-x^{2}-6=-11x-42+5x^{2}
Subtract 36 from -6 to get -42.
5x-x^{2}-6+11x=-42+5x^{2}
Add 11x to both sides.
16x-x^{2}-6=-42+5x^{2}
Combine 5x and 11x to get 16x.
16x-x^{2}-6-\left(-42\right)=5x^{2}
Subtract -42 from both sides.
16x-x^{2}-6+42=5x^{2}
The opposite of -42 is 42.
16x-x^{2}-6+42-5x^{2}=0
Subtract 5x^{2} from both sides.
16x-x^{2}+36-5x^{2}=0
Add -6 and 42 to get 36.
16x-6x^{2}+36=0
Combine -x^{2} and -5x^{2} to get -6x^{2}.
-6x^{2}+16x+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-6\right)\times 36}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 16 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-6\right)\times 36}}{2\left(-6\right)}
Square 16.
x=\frac{-16±\sqrt{256+24\times 36}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-16±\sqrt{256+864}}{2\left(-6\right)}
Multiply 24 times 36.
x=\frac{-16±\sqrt{1120}}{2\left(-6\right)}
Add 256 to 864.
x=\frac{-16±4\sqrt{70}}{2\left(-6\right)}
Take the square root of 1120.
x=\frac{-16±4\sqrt{70}}{-12}
Multiply 2 times -6.
x=\frac{4\sqrt{70}-16}{-12}
Now solve the equation x=\frac{-16±4\sqrt{70}}{-12} when ± is plus. Add -16 to 4\sqrt{70}.
x=\frac{4-\sqrt{70}}{3}
Divide -16+4\sqrt{70} by -12.
x=\frac{-4\sqrt{70}-16}{-12}
Now solve the equation x=\frac{-16±4\sqrt{70}}{-12} when ± is minus. Subtract 4\sqrt{70} from -16.
x=\frac{\sqrt{70}+4}{3}
Divide -16-4\sqrt{70} by -12.
x=\frac{4-\sqrt{70}}{3} x=\frac{\sqrt{70}+4}{3}
The equation is now solved.
\left(x-3\right)\left(2-x\right)=-\left(2+x\right)\left(x+3\right)+\left(x-3\right)\left(x+2\right)\times 6
Variable x cannot be equal to any of the values -2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+2\right), the least common multiple of x+2,3-x.
5x-x^{2}-6=-\left(2+x\right)\left(x+3\right)+\left(x-3\right)\left(x+2\right)\times 6
Use the distributive property to multiply x-3 by 2-x and combine like terms.
5x-x^{2}-6=\left(-2-x\right)\left(x+3\right)+\left(x-3\right)\left(x+2\right)\times 6
Use the distributive property to multiply -1 by 2+x.
5x-x^{2}-6=-5x-6-x^{2}+\left(x-3\right)\left(x+2\right)\times 6
Use the distributive property to multiply -2-x by x+3 and combine like terms.
5x-x^{2}-6=-5x-6-x^{2}+\left(x^{2}-x-6\right)\times 6
Use the distributive property to multiply x-3 by x+2 and combine like terms.
5x-x^{2}-6=-5x-6-x^{2}+6x^{2}-6x-36
Use the distributive property to multiply x^{2}-x-6 by 6.
5x-x^{2}-6=-5x-6+5x^{2}-6x-36
Combine -x^{2} and 6x^{2} to get 5x^{2}.
5x-x^{2}-6=-11x-6+5x^{2}-36
Combine -5x and -6x to get -11x.
5x-x^{2}-6=-11x-42+5x^{2}
Subtract 36 from -6 to get -42.
5x-x^{2}-6+11x=-42+5x^{2}
Add 11x to both sides.
16x-x^{2}-6=-42+5x^{2}
Combine 5x and 11x to get 16x.
16x-x^{2}-6-5x^{2}=-42
Subtract 5x^{2} from both sides.
16x-6x^{2}-6=-42
Combine -x^{2} and -5x^{2} to get -6x^{2}.
16x-6x^{2}=-42+6
Add 6 to both sides.
16x-6x^{2}=-36
Add -42 and 6 to get -36.
-6x^{2}+16x=-36
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}+16x}{-6}=-\frac{36}{-6}
Divide both sides by -6.
x^{2}+\frac{16}{-6}x=-\frac{36}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{8}{3}x=-\frac{36}{-6}
Reduce the fraction \frac{16}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{8}{3}x=6
Divide -36 by -6.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=6+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=6+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{70}{9}
Add 6 to \frac{16}{9}.
\left(x-\frac{4}{3}\right)^{2}=\frac{70}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{70}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{\sqrt{70}}{3} x-\frac{4}{3}=-\frac{\sqrt{70}}{3}
Simplify.
x=\frac{\sqrt{70}+4}{3} x=\frac{4-\sqrt{70}}{3}
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}