Solve for a
a=-5
Share
Copied to clipboard
\frac{2-3}{-3-a}=-\frac{1}{2}
Divide both sides by 2.
-2\left(2-3\right)=-\left(a+3\right)
Variable a cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by 2\left(a+3\right), the least common multiple of -3-a,2.
-2\left(-1\right)=-\left(a+3\right)
Subtract 3 from 2 to get -1.
2=-\left(a+3\right)
Multiply -2 and -1 to get 2.
2=-a-3
To find the opposite of a+3, find the opposite of each term.
-a-3=2
Swap sides so that all variable terms are on the left hand side.
-a=2+3
Add 3 to both sides.
-a=5
Add 2 and 3 to get 5.
a=-5
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}