Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2+i+1\times 4+1\times \left(-3i\right)+4i-3i^{2}}{3+2i}
Multiply complex numbers 1+i and 4-3i like you multiply binomials.
\frac{2+i+1\times 4+1\times \left(-3i\right)+4i-3\left(-1\right)}{3+2i}
By definition, i^{2} is -1.
\frac{2+i+4-3i+4i+3}{3+2i}
Do the multiplications in 1\times 4+1\times \left(-3i\right)+4i-3\left(-1\right).
\frac{2+i+4+3+\left(-3+4\right)i}{3+2i}
Combine the real and imaginary parts in 4-3i+4i+3.
\frac{2+i+\left(7+i\right)}{3+2i}
Do the additions in 4+3+\left(-3+4\right)i.
\frac{2+7+\left(1+1\right)i}{3+2i}
Combine the real and imaginary parts in 2+i+7+i.
\frac{9+2i}{3+2i}
Do the additions in 2+7+\left(1+1\right)i.
\frac{\left(9+2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-2i.
\frac{\left(9+2i\right)\left(3-2i\right)}{3^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9+2i\right)\left(3-2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 3+9\times \left(-2i\right)+2i\times 3+2\left(-2\right)i^{2}}{13}
Multiply complex numbers 9+2i and 3-2i like you multiply binomials.
\frac{9\times 3+9\times \left(-2i\right)+2i\times 3+2\left(-2\right)\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{27-18i+6i+4}{13}
Do the multiplications in 9\times 3+9\times \left(-2i\right)+2i\times 3+2\left(-2\right)\left(-1\right).
\frac{27+4+\left(-18+6\right)i}{13}
Combine the real and imaginary parts in 27-18i+6i+4.
\frac{31-12i}{13}
Do the additions in 27+4+\left(-18+6\right)i.
\frac{31}{13}-\frac{12}{13}i
Divide 31-12i by 13 to get \frac{31}{13}-\frac{12}{13}i.
Re(\frac{2+i+1\times 4+1\times \left(-3i\right)+4i-3i^{2}}{3+2i})
Multiply complex numbers 1+i and 4-3i like you multiply binomials.
Re(\frac{2+i+1\times 4+1\times \left(-3i\right)+4i-3\left(-1\right)}{3+2i})
By definition, i^{2} is -1.
Re(\frac{2+i+4-3i+4i+3}{3+2i})
Do the multiplications in 1\times 4+1\times \left(-3i\right)+4i-3\left(-1\right).
Re(\frac{2+i+4+3+\left(-3+4\right)i}{3+2i})
Combine the real and imaginary parts in 4-3i+4i+3.
Re(\frac{2+i+\left(7+i\right)}{3+2i})
Do the additions in 4+3+\left(-3+4\right)i.
Re(\frac{2+7+\left(1+1\right)i}{3+2i})
Combine the real and imaginary parts in 2+i+7+i.
Re(\frac{9+2i}{3+2i})
Do the additions in 2+7+\left(1+1\right)i.
Re(\frac{\left(9+2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)})
Multiply both numerator and denominator of \frac{9+2i}{3+2i} by the complex conjugate of the denominator, 3-2i.
Re(\frac{\left(9+2i\right)\left(3-2i\right)}{3^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(9+2i\right)\left(3-2i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 3+9\times \left(-2i\right)+2i\times 3+2\left(-2\right)i^{2}}{13})
Multiply complex numbers 9+2i and 3-2i like you multiply binomials.
Re(\frac{9\times 3+9\times \left(-2i\right)+2i\times 3+2\left(-2\right)\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{27-18i+6i+4}{13})
Do the multiplications in 9\times 3+9\times \left(-2i\right)+2i\times 3+2\left(-2\right)\left(-1\right).
Re(\frac{27+4+\left(-18+6\right)i}{13})
Combine the real and imaginary parts in 27-18i+6i+4.
Re(\frac{31-12i}{13})
Do the additions in 27+4+\left(-18+6\right)i.
Re(\frac{31}{13}-\frac{12}{13}i)
Divide 31-12i by 13 to get \frac{31}{13}-\frac{12}{13}i.
\frac{31}{13}
The real part of \frac{31}{13}-\frac{12}{13}i is \frac{31}{13}.