Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Rationalize the denominator of \frac{2+\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Square 2. Square \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)^{2}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Multiply 2+\sqrt{3} and 2+\sqrt{3} to get \left(2+\sqrt{3}\right)^{2}.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{2-\sqrt{3}}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)^{2}
Multiply 2-\sqrt{3} and 2-\sqrt{3} to get \left(2-\sqrt{3}\right)^{2}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3-\left(2-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\left(2-\sqrt{3}\right)^{2}
Add 4 and 3 to get 7.
7+4\sqrt{3}-\left(4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
7+4\sqrt{3}-\left(4-4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\left(7-4\sqrt{3}\right)
Add 4 and 3 to get 7.
7+4\sqrt{3}-7-\left(-4\sqrt{3}\right)
To find the opposite of 7-4\sqrt{3}, find the opposite of each term.
7+4\sqrt{3}-7+4\sqrt{3}
The opposite of -4\sqrt{3} is 4\sqrt{3}.
4\sqrt{3}+4\sqrt{3}
Subtract 7 from 7 to get 0.
8\sqrt{3}
Combine 4\sqrt{3} and 4\sqrt{3} to get 8\sqrt{3}.