Evaluate
8\sqrt{3}\approx 13.856406461
Share
Copied to clipboard
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Rationalize the denominator of \frac{2+\sqrt{3}}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Square 2. Square \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)^{2}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
Multiply 2+\sqrt{3} and 2+\sqrt{3} to get \left(2+\sqrt{3}\right)^{2}.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{2-\sqrt{3}}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{4-3}
Square 2. Square \sqrt{3}.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)^{2}
Multiply 2-\sqrt{3} and 2-\sqrt{3} to get \left(2-\sqrt{3}\right)^{2}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3-\left(2-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\left(2-\sqrt{3}\right)^{2}
Add 4 and 3 to get 7.
7+4\sqrt{3}-\left(4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
7+4\sqrt{3}-\left(4-4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
7+4\sqrt{3}-\left(7-4\sqrt{3}\right)
Add 4 and 3 to get 7.
7+4\sqrt{3}-7-\left(-4\sqrt{3}\right)
To find the opposite of 7-4\sqrt{3}, find the opposite of each term.
7+4\sqrt{3}-7+4\sqrt{3}
The opposite of -4\sqrt{3} is 4\sqrt{3}.
4\sqrt{3}+4\sqrt{3}
Subtract 7 from 7 to get 0.
8\sqrt{3}
Combine 4\sqrt{3} and 4\sqrt{3} to get 8\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}