Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x^{2}+3x+1}{2x-3}-\left(x^{2}-6x+7\right)
Anything divided by one gives itself.
\frac{2x^{2}+3x+1}{2x-3}-x^{2}+6x-7
To find the opposite of x^{2}-6x+7, find the opposite of each term.
\frac{2x^{2}+3x+1}{2x-3}+\frac{\left(-x^{2}+6x-7\right)\left(2x-3\right)}{2x-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{2}+6x-7 times \frac{2x-3}{2x-3}.
\frac{2x^{2}+3x+1+\left(-x^{2}+6x-7\right)\left(2x-3\right)}{2x-3}
Since \frac{2x^{2}+3x+1}{2x-3} and \frac{\left(-x^{2}+6x-7\right)\left(2x-3\right)}{2x-3} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+3x+1-2x^{3}+3x^{2}+12x^{2}-18x-14x+21}{2x-3}
Do the multiplications in 2x^{2}+3x+1+\left(-x^{2}+6x-7\right)\left(2x-3\right).
\frac{17x^{2}-29x+22-2x^{3}}{2x-3}
Combine like terms in 2x^{2}+3x+1-2x^{3}+3x^{2}+12x^{2}-18x-14x+21.
\frac{2x^{2}+3x+1}{2x-3}-\left(x^{2}-6x+7\right)
Anything divided by one gives itself.
\frac{2x^{2}+3x+1}{2x-3}-x^{2}+6x-7
To find the opposite of x^{2}-6x+7, find the opposite of each term.
\frac{2x^{2}+3x+1}{2x-3}+\frac{\left(-x^{2}+6x-7\right)\left(2x-3\right)}{2x-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{2}+6x-7 times \frac{2x-3}{2x-3}.
\frac{2x^{2}+3x+1+\left(-x^{2}+6x-7\right)\left(2x-3\right)}{2x-3}
Since \frac{2x^{2}+3x+1}{2x-3} and \frac{\left(-x^{2}+6x-7\right)\left(2x-3\right)}{2x-3} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+3x+1-2x^{3}+3x^{2}+12x^{2}-18x-14x+21}{2x-3}
Do the multiplications in 2x^{2}+3x+1+\left(-x^{2}+6x-7\right)\left(2x-3\right).
\frac{17x^{2}-29x+22-2x^{3}}{2x-3}
Combine like terms in 2x^{2}+3x+1-2x^{3}+3x^{2}+12x^{2}-18x-14x+21.