\frac{ 2 { \left( \frac{ 1 }{ x } \right) }^{ 2 } +3 { \left( \frac{ 1 }{ x } \right) }^{ } -4 }{ 3 \frac{ 1 }{ x } +3 }
Evaluate
\frac{2+3x-4x^{2}}{3x\left(x+1\right)}
Expand
-\frac{4x^{2}-3x-2}{3x\left(x+1\right)}
Graph
Share
Copied to clipboard
\frac{2\times \frac{1^{2}}{x^{2}}+3\times \left(\frac{1}{x}\right)^{1}-4}{3\times \frac{1}{x}+3}
To raise \frac{1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{2\times 1^{2}}{x^{2}}+3\times \left(\frac{1}{x}\right)^{1}-4}{3\times \frac{1}{x}+3}
Express 2\times \frac{1^{2}}{x^{2}} as a single fraction.
\frac{\frac{2\times 1^{2}}{x^{2}}+3\times \frac{1}{x}-4}{3\times \frac{1}{x}+3}
Calculate \frac{1}{x} to the power of 1 and get \frac{1}{x}.
\frac{\frac{2\times 1^{2}}{x^{2}}+\frac{3}{x}-4}{3\times \frac{1}{x}+3}
Express 3\times \frac{1}{x} as a single fraction.
\frac{\frac{2\times 1^{2}}{x^{2}}+\frac{3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{3}{x} times \frac{x}{x}.
\frac{\frac{2\times 1^{2}+3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
Since \frac{2\times 1^{2}}{x^{2}} and \frac{3x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{2+3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
Do the multiplications in 2\times 1^{2}+3x.
\frac{\frac{2+3x}{x^{2}}-\frac{4x^{2}}{x^{2}}}{3\times \frac{1}{x}+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x^{2}}{x^{2}}.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{3\times \frac{1}{x}+3}
Since \frac{2+3x}{x^{2}} and \frac{4x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3}{x}+3}
Express 3\times \frac{1}{x} as a single fraction.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3}{x}+\frac{3x}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3+3x}{x}}
Since \frac{3}{x} and \frac{3x}{x} have the same denominator, add them by adding their numerators.
\frac{\left(2+3x-4x^{2}\right)x}{x^{2}\left(3+3x\right)}
Divide \frac{2+3x-4x^{2}}{x^{2}} by \frac{3+3x}{x} by multiplying \frac{2+3x-4x^{2}}{x^{2}} by the reciprocal of \frac{3+3x}{x}.
\frac{-4x^{2}+3x+2}{x\left(3x+3\right)}
Cancel out x in both numerator and denominator.
\frac{-4x^{2}+3x+2}{3x^{2}+3x}
Use the distributive property to multiply x by 3x+3.
\frac{2\times \frac{1^{2}}{x^{2}}+3\times \left(\frac{1}{x}\right)^{1}-4}{3\times \frac{1}{x}+3}
To raise \frac{1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{2\times 1^{2}}{x^{2}}+3\times \left(\frac{1}{x}\right)^{1}-4}{3\times \frac{1}{x}+3}
Express 2\times \frac{1^{2}}{x^{2}} as a single fraction.
\frac{\frac{2\times 1^{2}}{x^{2}}+3\times \frac{1}{x}-4}{3\times \frac{1}{x}+3}
Calculate \frac{1}{x} to the power of 1 and get \frac{1}{x}.
\frac{\frac{2\times 1^{2}}{x^{2}}+\frac{3}{x}-4}{3\times \frac{1}{x}+3}
Express 3\times \frac{1}{x} as a single fraction.
\frac{\frac{2\times 1^{2}}{x^{2}}+\frac{3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{3}{x} times \frac{x}{x}.
\frac{\frac{2\times 1^{2}+3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
Since \frac{2\times 1^{2}}{x^{2}} and \frac{3x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{2+3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
Do the multiplications in 2\times 1^{2}+3x.
\frac{\frac{2+3x}{x^{2}}-\frac{4x^{2}}{x^{2}}}{3\times \frac{1}{x}+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x^{2}}{x^{2}}.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{3\times \frac{1}{x}+3}
Since \frac{2+3x}{x^{2}} and \frac{4x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3}{x}+3}
Express 3\times \frac{1}{x} as a single fraction.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3}{x}+\frac{3x}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3+3x}{x}}
Since \frac{3}{x} and \frac{3x}{x} have the same denominator, add them by adding their numerators.
\frac{\left(2+3x-4x^{2}\right)x}{x^{2}\left(3+3x\right)}
Divide \frac{2+3x-4x^{2}}{x^{2}} by \frac{3+3x}{x} by multiplying \frac{2+3x-4x^{2}}{x^{2}} by the reciprocal of \frac{3+3x}{x}.
\frac{-4x^{2}+3x+2}{x\left(3x+3\right)}
Cancel out x in both numerator and denominator.
\frac{-4x^{2}+3x+2}{3x^{2}+3x}
Use the distributive property to multiply x by 3x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}