Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2\times \frac{1^{2}}{x^{2}}+3\times \left(\frac{1}{x}\right)^{1}-4}{3\times \frac{1}{x}+3}
To raise \frac{1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{2\times 1^{2}}{x^{2}}+3\times \left(\frac{1}{x}\right)^{1}-4}{3\times \frac{1}{x}+3}
Express 2\times \frac{1^{2}}{x^{2}} as a single fraction.
\frac{\frac{2\times 1^{2}}{x^{2}}+3\times \frac{1}{x}-4}{3\times \frac{1}{x}+3}
Calculate \frac{1}{x} to the power of 1 and get \frac{1}{x}.
\frac{\frac{2\times 1^{2}}{x^{2}}+\frac{3}{x}-4}{3\times \frac{1}{x}+3}
Express 3\times \frac{1}{x} as a single fraction.
\frac{\frac{2\times 1^{2}}{x^{2}}+\frac{3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{3}{x} times \frac{x}{x}.
\frac{\frac{2\times 1^{2}+3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
Since \frac{2\times 1^{2}}{x^{2}} and \frac{3x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{2+3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
Do the multiplications in 2\times 1^{2}+3x.
\frac{\frac{2+3x}{x^{2}}-\frac{4x^{2}}{x^{2}}}{3\times \frac{1}{x}+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x^{2}}{x^{2}}.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{3\times \frac{1}{x}+3}
Since \frac{2+3x}{x^{2}} and \frac{4x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3}{x}+3}
Express 3\times \frac{1}{x} as a single fraction.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3}{x}+\frac{3x}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3+3x}{x}}
Since \frac{3}{x} and \frac{3x}{x} have the same denominator, add them by adding their numerators.
\frac{\left(2+3x-4x^{2}\right)x}{x^{2}\left(3+3x\right)}
Divide \frac{2+3x-4x^{2}}{x^{2}} by \frac{3+3x}{x} by multiplying \frac{2+3x-4x^{2}}{x^{2}} by the reciprocal of \frac{3+3x}{x}.
\frac{-4x^{2}+3x+2}{x\left(3x+3\right)}
Cancel out x in both numerator and denominator.
\frac{-4x^{2}+3x+2}{3x^{2}+3x}
Use the distributive property to multiply x by 3x+3.
\frac{2\times \frac{1^{2}}{x^{2}}+3\times \left(\frac{1}{x}\right)^{1}-4}{3\times \frac{1}{x}+3}
To raise \frac{1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{2\times 1^{2}}{x^{2}}+3\times \left(\frac{1}{x}\right)^{1}-4}{3\times \frac{1}{x}+3}
Express 2\times \frac{1^{2}}{x^{2}} as a single fraction.
\frac{\frac{2\times 1^{2}}{x^{2}}+3\times \frac{1}{x}-4}{3\times \frac{1}{x}+3}
Calculate \frac{1}{x} to the power of 1 and get \frac{1}{x}.
\frac{\frac{2\times 1^{2}}{x^{2}}+\frac{3}{x}-4}{3\times \frac{1}{x}+3}
Express 3\times \frac{1}{x} as a single fraction.
\frac{\frac{2\times 1^{2}}{x^{2}}+\frac{3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{3}{x} times \frac{x}{x}.
\frac{\frac{2\times 1^{2}+3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
Since \frac{2\times 1^{2}}{x^{2}} and \frac{3x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{2+3x}{x^{2}}-4}{3\times \frac{1}{x}+3}
Do the multiplications in 2\times 1^{2}+3x.
\frac{\frac{2+3x}{x^{2}}-\frac{4x^{2}}{x^{2}}}{3\times \frac{1}{x}+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x^{2}}{x^{2}}.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{3\times \frac{1}{x}+3}
Since \frac{2+3x}{x^{2}} and \frac{4x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3}{x}+3}
Express 3\times \frac{1}{x} as a single fraction.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3}{x}+\frac{3x}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\frac{\frac{2+3x-4x^{2}}{x^{2}}}{\frac{3+3x}{x}}
Since \frac{3}{x} and \frac{3x}{x} have the same denominator, add them by adding their numerators.
\frac{\left(2+3x-4x^{2}\right)x}{x^{2}\left(3+3x\right)}
Divide \frac{2+3x-4x^{2}}{x^{2}} by \frac{3+3x}{x} by multiplying \frac{2+3x-4x^{2}}{x^{2}} by the reciprocal of \frac{3+3x}{x}.
\frac{-4x^{2}+3x+2}{x\left(3x+3\right)}
Cancel out x in both numerator and denominator.
\frac{-4x^{2}+3x+2}{3x^{2}+3x}
Use the distributive property to multiply x by 3x+3.