Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{8}{4^{2}+3}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Multiply 2 and 4 to get 8.
\frac{8}{16+3}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Calculate 4 to the power of 2 and get 16.
\frac{8}{19}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Add 16 and 3 to get 19.
\frac{8\times 5}{19\times 2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Multiply \frac{8}{19} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{40}{38}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Do the multiplications in the fraction \frac{8\times 5}{19\times 2}.
\frac{20}{19}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Reduce the fraction \frac{40}{38} to lowest terms by extracting and canceling out 2.
\frac{20}{19}-\frac{2x-2}{-4+3}\times \frac{5}{2}
Calculate 2 to the power of 2 and get 4.
\frac{20}{19}-\frac{2x-2}{-1}\times \frac{5}{2}
Add -4 and 3 to get -1.
\frac{20}{19}-\left(-2x-\left(-2\right)\right)\times \frac{5}{2}
Anything divided by -1 gives its opposite. To find the opposite of 2x-2, find the opposite of each term.
\frac{20}{19}-\left(-2x\times \frac{5}{2}+\left(-\left(-2\right)\right)\times \frac{5}{2}\right)
Use the distributive property to multiply -2x-\left(-2\right) by \frac{5}{2}.
\frac{20}{19}-\left(-5x+\left(-\left(-2\right)\right)\times \frac{5}{2}\right)
Multiply -2 times \frac{5}{2}.
\frac{20}{19}-\left(-5x+2\times \frac{5}{2}\right)
The opposite of -2 is 2.
\frac{20}{19}-\left(-5x+5\right)
Cancel out 2 and 2.
\frac{20}{19}-\left(-5x\right)-5
To find the opposite of -5x+5, find the opposite of each term.
\frac{20}{19}+5x-5
The opposite of -5x is 5x.
\frac{20}{19}+5x-\frac{95}{19}
Convert 5 to fraction \frac{95}{19}.
\frac{20-95}{19}+5x
Since \frac{20}{19} and \frac{95}{19} have the same denominator, subtract them by subtracting their numerators.
-\frac{75}{19}+5x
Subtract 95 from 20 to get -75.
\frac{8}{4^{2}+3}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Multiply 2 and 4 to get 8.
\frac{8}{16+3}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Calculate 4 to the power of 2 and get 16.
\frac{8}{19}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Add 16 and 3 to get 19.
\frac{8\times 5}{19\times 2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Multiply \frac{8}{19} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{40}{38}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Do the multiplications in the fraction \frac{8\times 5}{19\times 2}.
\frac{20}{19}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Reduce the fraction \frac{40}{38} to lowest terms by extracting and canceling out 2.
\frac{20}{19}-\frac{2x-2}{-4+3}\times \frac{5}{2}
Calculate 2 to the power of 2 and get 4.
\frac{20}{19}-\frac{2x-2}{-1}\times \frac{5}{2}
Add -4 and 3 to get -1.
\frac{20}{19}-\left(-2x-\left(-2\right)\right)\times \frac{5}{2}
Anything divided by -1 gives its opposite. To find the opposite of 2x-2, find the opposite of each term.
\frac{20}{19}-\left(-2x\times \frac{5}{2}+\left(-\left(-2\right)\right)\times \frac{5}{2}\right)
Use the distributive property to multiply -2x-\left(-2\right) by \frac{5}{2}.
\frac{20}{19}-\left(-5x+\left(-\left(-2\right)\right)\times \frac{5}{2}\right)
Multiply -2 times \frac{5}{2}.
\frac{20}{19}-\left(-5x+2\times \frac{5}{2}\right)
The opposite of -2 is 2.
\frac{20}{19}-\left(-5x+5\right)
Cancel out 2 and 2.
\frac{20}{19}-\left(-5x\right)-5
To find the opposite of -5x+5, find the opposite of each term.
\frac{20}{19}+5x-5
The opposite of -5x is 5x.
\frac{20}{19}+5x-\frac{95}{19}
Convert 5 to fraction \frac{95}{19}.
\frac{20-95}{19}+5x
Since \frac{20}{19} and \frac{95}{19} have the same denominator, subtract them by subtracting their numerators.
-\frac{75}{19}+5x
Subtract 95 from 20 to get -75.