Evaluate
5x-\frac{75}{19}
Expand
5x-\frac{75}{19}
Graph
Share
Copied to clipboard
\frac{8}{4^{2}+3}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Multiply 2 and 4 to get 8.
\frac{8}{16+3}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Calculate 4 to the power of 2 and get 16.
\frac{8}{19}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Add 16 and 3 to get 19.
\frac{8\times 5}{19\times 2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Multiply \frac{8}{19} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{40}{38}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Do the multiplications in the fraction \frac{8\times 5}{19\times 2}.
\frac{20}{19}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Reduce the fraction \frac{40}{38} to lowest terms by extracting and canceling out 2.
\frac{20}{19}-\frac{2x-2}{-4+3}\times \frac{5}{2}
Calculate 2 to the power of 2 and get 4.
\frac{20}{19}-\frac{2x-2}{-1}\times \frac{5}{2}
Add -4 and 3 to get -1.
\frac{20}{19}-\left(-2x-\left(-2\right)\right)\times \frac{5}{2}
Anything divided by -1 gives its opposite. To find the opposite of 2x-2, find the opposite of each term.
\frac{20}{19}-\left(-2x\times \frac{5}{2}+\left(-\left(-2\right)\right)\times \frac{5}{2}\right)
Use the distributive property to multiply -2x-\left(-2\right) by \frac{5}{2}.
\frac{20}{19}-\left(-5x+\left(-\left(-2\right)\right)\times \frac{5}{2}\right)
Multiply -2 times \frac{5}{2}.
\frac{20}{19}-\left(-5x+2\times \frac{5}{2}\right)
The opposite of -2 is 2.
\frac{20}{19}-\left(-5x+5\right)
Cancel out 2 and 2.
\frac{20}{19}-\left(-5x\right)-5
To find the opposite of -5x+5, find the opposite of each term.
\frac{20}{19}+5x-5
The opposite of -5x is 5x.
\frac{20}{19}+5x-\frac{95}{19}
Convert 5 to fraction \frac{95}{19}.
\frac{20-95}{19}+5x
Since \frac{20}{19} and \frac{95}{19} have the same denominator, subtract them by subtracting their numerators.
-\frac{75}{19}+5x
Subtract 95 from 20 to get -75.
\frac{8}{4^{2}+3}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Multiply 2 and 4 to get 8.
\frac{8}{16+3}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Calculate 4 to the power of 2 and get 16.
\frac{8}{19}\times \frac{5}{2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Add 16 and 3 to get 19.
\frac{8\times 5}{19\times 2}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Multiply \frac{8}{19} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{40}{38}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Do the multiplications in the fraction \frac{8\times 5}{19\times 2}.
\frac{20}{19}-\frac{2x-2}{-2^{2}+3}\times \frac{5}{2}
Reduce the fraction \frac{40}{38} to lowest terms by extracting and canceling out 2.
\frac{20}{19}-\frac{2x-2}{-4+3}\times \frac{5}{2}
Calculate 2 to the power of 2 and get 4.
\frac{20}{19}-\frac{2x-2}{-1}\times \frac{5}{2}
Add -4 and 3 to get -1.
\frac{20}{19}-\left(-2x-\left(-2\right)\right)\times \frac{5}{2}
Anything divided by -1 gives its opposite. To find the opposite of 2x-2, find the opposite of each term.
\frac{20}{19}-\left(-2x\times \frac{5}{2}+\left(-\left(-2\right)\right)\times \frac{5}{2}\right)
Use the distributive property to multiply -2x-\left(-2\right) by \frac{5}{2}.
\frac{20}{19}-\left(-5x+\left(-\left(-2\right)\right)\times \frac{5}{2}\right)
Multiply -2 times \frac{5}{2}.
\frac{20}{19}-\left(-5x+2\times \frac{5}{2}\right)
The opposite of -2 is 2.
\frac{20}{19}-\left(-5x+5\right)
Cancel out 2 and 2.
\frac{20}{19}-\left(-5x\right)-5
To find the opposite of -5x+5, find the opposite of each term.
\frac{20}{19}+5x-5
The opposite of -5x is 5x.
\frac{20}{19}+5x-\frac{95}{19}
Convert 5 to fraction \frac{95}{19}.
\frac{20-95}{19}+5x
Since \frac{20}{19} and \frac{95}{19} have the same denominator, subtract them by subtracting their numerators.
-\frac{75}{19}+5x
Subtract 95 from 20 to get -75.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}