Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2\times 2\sqrt{1+3x^{2}}=8x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x^{2}, the least common multiple of -3x^{2},3.
-4\sqrt{1+3x^{2}}=8x^{2}
Multiply -2 and 2 to get -4.
-4\sqrt{1+3x^{2}}-8x^{2}=0
Subtract 8x^{2} from both sides.
-4\sqrt{1+3x^{2}}=8x^{2}
Subtract -8x^{2} from both sides of the equation.
\left(-4\sqrt{1+3x^{2}}\right)^{2}=\left(8x^{2}\right)^{2}
Square both sides of the equation.
\left(-4\right)^{2}\left(\sqrt{1+3x^{2}}\right)^{2}=\left(8x^{2}\right)^{2}
Expand \left(-4\sqrt{1+3x^{2}}\right)^{2}.
16\left(\sqrt{1+3x^{2}}\right)^{2}=\left(8x^{2}\right)^{2}
Calculate -4 to the power of 2 and get 16.
16\left(1+3x^{2}\right)=\left(8x^{2}\right)^{2}
Calculate \sqrt{1+3x^{2}} to the power of 2 and get 1+3x^{2}.
16+48x^{2}=\left(8x^{2}\right)^{2}
Use the distributive property to multiply 16 by 1+3x^{2}.
16+48x^{2}=8^{2}\left(x^{2}\right)^{2}
Expand \left(8x^{2}\right)^{2}.
16+48x^{2}=8^{2}x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16+48x^{2}=64x^{4}
Calculate 8 to the power of 2 and get 64.
16+48x^{2}-64x^{4}=0
Subtract 64x^{4} from both sides.
-64t^{2}+48t+16=0
Substitute t for x^{2}.
t=\frac{-48±\sqrt{48^{2}-4\left(-64\right)\times 16}}{-64\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -64 for a, 48 for b, and 16 for c in the quadratic formula.
t=\frac{-48±80}{-128}
Do the calculations.
t=-\frac{1}{4} t=1
Solve the equation t=\frac{-48±80}{-128} when ± is plus and when ± is minus.
x=-\frac{1}{2}i x=\frac{1}{2}i x=-1 x=1
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\frac{2\times 2\sqrt{1+3\times \left(-\frac{1}{2}i\right)^{2}}}{-3\times \left(-\frac{1}{2}i\right)^{2}}=\frac{8}{3}
Substitute -\frac{1}{2}i for x in the equation \frac{2\times 2\sqrt{1+3x^{2}}}{-3x^{2}}=\frac{8}{3}.
\frac{8}{3}=\frac{8}{3}
Simplify. The value x=-\frac{1}{2}i satisfies the equation.
\frac{2\times 2\sqrt{1+3\times \left(\frac{1}{2}i\right)^{2}}}{-3\times \left(\frac{1}{2}i\right)^{2}}=\frac{8}{3}
Substitute \frac{1}{2}i for x in the equation \frac{2\times 2\sqrt{1+3x^{2}}}{-3x^{2}}=\frac{8}{3}.
\frac{8}{3}=\frac{8}{3}
Simplify. The value x=\frac{1}{2}i satisfies the equation.
\frac{2\times 2\sqrt{1+3\left(-1\right)^{2}}}{-3\left(-1\right)^{2}}=\frac{8}{3}
Substitute -1 for x in the equation \frac{2\times 2\sqrt{1+3x^{2}}}{-3x^{2}}=\frac{8}{3}.
-\frac{8}{3}=\frac{8}{3}
Simplify. The value x=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
\frac{2\times 2\sqrt{1+3\times 1^{2}}}{-3\times 1^{2}}=\frac{8}{3}
Substitute 1 for x in the equation \frac{2\times 2\sqrt{1+3x^{2}}}{-3x^{2}}=\frac{8}{3}.
-\frac{8}{3}=\frac{8}{3}
Simplify. The value x=1 does not satisfy the equation because the left and the right hand side have opposite signs.
x=-\frac{1}{2}i x=\frac{1}{2}i
List all solutions of -4\sqrt{3x^{2}+1}=8x^{2}.