Evaluate
\frac{2\left(\sqrt{3}+2\sqrt{6}+16\sqrt{2}+8\right)}{21}\approx 3.548423552
Factor
\frac{2 {(\sqrt{3} + 2 \sqrt{6} + 16 \sqrt{2} + 8)}}{21} = 3.5484235515337863
Share
Copied to clipboard
\frac{\frac{2\times 8}{9}+\frac{2\sqrt{3}}{9}}{\frac{2\sqrt{2}}{3}-\frac{1}{3}}
Express 2\times \frac{8}{9} as a single fraction.
\frac{\frac{16}{9}+\frac{2\sqrt{3}}{9}}{\frac{2\sqrt{2}}{3}-\frac{1}{3}}
Multiply 2 and 8 to get 16.
\frac{\frac{16+2\sqrt{3}}{9}}{\frac{2\sqrt{2}}{3}-\frac{1}{3}}
Since \frac{16}{9} and \frac{2\sqrt{3}}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{16+2\sqrt{3}}{9}}{\frac{2\sqrt{2}-1}{3}}
Since \frac{2\sqrt{2}}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(16+2\sqrt{3}\right)\times 3}{9\left(2\sqrt{2}-1\right)}
Divide \frac{16+2\sqrt{3}}{9} by \frac{2\sqrt{2}-1}{3} by multiplying \frac{16+2\sqrt{3}}{9} by the reciprocal of \frac{2\sqrt{2}-1}{3}.
\frac{2\sqrt{3}+16}{3\left(2\sqrt{2}-1\right)}
Cancel out 3 in both numerator and denominator.
\frac{2\sqrt{3}+16}{6\sqrt{2}-3}
Use the distributive property to multiply 3 by 2\sqrt{2}-1.
\frac{\left(2\sqrt{3}+16\right)\left(6\sqrt{2}+3\right)}{\left(6\sqrt{2}-3\right)\left(6\sqrt{2}+3\right)}
Rationalize the denominator of \frac{2\sqrt{3}+16}{6\sqrt{2}-3} by multiplying numerator and denominator by 6\sqrt{2}+3.
\frac{\left(2\sqrt{3}+16\right)\left(6\sqrt{2}+3\right)}{\left(6\sqrt{2}\right)^{2}-3^{2}}
Consider \left(6\sqrt{2}-3\right)\left(6\sqrt{2}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+16\right)\left(6\sqrt{2}+3\right)}{6^{2}\left(\sqrt{2}\right)^{2}-3^{2}}
Expand \left(6\sqrt{2}\right)^{2}.
\frac{\left(2\sqrt{3}+16\right)\left(6\sqrt{2}+3\right)}{36\left(\sqrt{2}\right)^{2}-3^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\left(2\sqrt{3}+16\right)\left(6\sqrt{2}+3\right)}{36\times 2-3^{2}}
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{3}+16\right)\left(6\sqrt{2}+3\right)}{72-3^{2}}
Multiply 36 and 2 to get 72.
\frac{\left(2\sqrt{3}+16\right)\left(6\sqrt{2}+3\right)}{72-9}
Calculate 3 to the power of 2 and get 9.
\frac{\left(2\sqrt{3}+16\right)\left(6\sqrt{2}+3\right)}{63}
Subtract 9 from 72 to get 63.
\frac{12\sqrt{3}\sqrt{2}+6\sqrt{3}+96\sqrt{2}+48}{63}
Apply the distributive property by multiplying each term of 2\sqrt{3}+16 by each term of 6\sqrt{2}+3.
\frac{12\sqrt{6}+6\sqrt{3}+96\sqrt{2}+48}{63}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}