Verify
true
Share
Copied to clipboard
\frac{\frac{2\times 4}{3}-3}{2\times \frac{4}{3}}=-\frac{1}{8}
Express 2\times \frac{4}{3} as a single fraction.
\frac{\frac{8}{3}-3}{2\times \frac{4}{3}}=-\frac{1}{8}
Multiply 2 and 4 to get 8.
\frac{\frac{8}{3}-\frac{9}{3}}{2\times \frac{4}{3}}=-\frac{1}{8}
Convert 3 to fraction \frac{9}{3}.
\frac{\frac{8-9}{3}}{2\times \frac{4}{3}}=-\frac{1}{8}
Since \frac{8}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{3}}{2\times \frac{4}{3}}=-\frac{1}{8}
Subtract 9 from 8 to get -1.
\frac{-\frac{1}{3}}{\frac{2\times 4}{3}}=-\frac{1}{8}
Express 2\times \frac{4}{3} as a single fraction.
\frac{-\frac{1}{3}}{\frac{8}{3}}=-\frac{1}{8}
Multiply 2 and 4 to get 8.
-\frac{1}{3}\times \frac{3}{8}=-\frac{1}{8}
Divide -\frac{1}{3} by \frac{8}{3} by multiplying -\frac{1}{3} by the reciprocal of \frac{8}{3}.
\frac{-3}{3\times 8}=-\frac{1}{8}
Multiply -\frac{1}{3} times \frac{3}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{8}=-\frac{1}{8}
Cancel out 3 in both numerator and denominator.
-\frac{1}{8}=-\frac{1}{8}
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
\text{true}
Compare -\frac{1}{8} and -\frac{1}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}