Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{7}+1}{3}\times \frac{15\sqrt{7}\left(\sqrt{7}-14\right)}{\left(\sqrt{7}+14\right)\left(\sqrt{7}-14\right)}
Rationalize the denominator of \frac{15\sqrt{7}}{\sqrt{7}+14} by multiplying numerator and denominator by \sqrt{7}-14.
\frac{2\sqrt{7}+1}{3}\times \frac{15\sqrt{7}\left(\sqrt{7}-14\right)}{\left(\sqrt{7}\right)^{2}-14^{2}}
Consider \left(\sqrt{7}+14\right)\left(\sqrt{7}-14\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{7}+1}{3}\times \frac{15\sqrt{7}\left(\sqrt{7}-14\right)}{7-196}
Square \sqrt{7}. Square 14.
\frac{2\sqrt{7}+1}{3}\times \frac{15\sqrt{7}\left(\sqrt{7}-14\right)}{-189}
Subtract 196 from 7 to get -189.
\frac{\left(2\sqrt{7}+1\right)\times 15\sqrt{7}\left(\sqrt{7}-14\right)}{3\left(-189\right)}
Multiply \frac{2\sqrt{7}+1}{3} times \frac{15\sqrt{7}\left(\sqrt{7}-14\right)}{-189} by multiplying numerator times numerator and denominator times denominator.
\frac{5\sqrt{7}\left(\sqrt{7}-14\right)\left(2\sqrt{7}+1\right)}{-189}
Cancel out 3 in both numerator and denominator.
\frac{\left(5\left(\sqrt{7}\right)^{2}-70\sqrt{7}\right)\left(2\sqrt{7}+1\right)}{-189}
Use the distributive property to multiply 5\sqrt{7} by \sqrt{7}-14.
\frac{\left(5\times 7-70\sqrt{7}\right)\left(2\sqrt{7}+1\right)}{-189}
The square of \sqrt{7} is 7.
\frac{\left(35-70\sqrt{7}\right)\left(2\sqrt{7}+1\right)}{-189}
Multiply 5 and 7 to get 35.
\frac{70\sqrt{7}+35-140\left(\sqrt{7}\right)^{2}-70\sqrt{7}}{-189}
Apply the distributive property by multiplying each term of 35-70\sqrt{7} by each term of 2\sqrt{7}+1.
\frac{70\sqrt{7}+35-140\times 7-70\sqrt{7}}{-189}
The square of \sqrt{7} is 7.
\frac{70\sqrt{7}+35-980-70\sqrt{7}}{-189}
Multiply -140 and 7 to get -980.
\frac{70\sqrt{7}-945-70\sqrt{7}}{-189}
Subtract 980 from 35 to get -945.
\frac{-945}{-189}
Combine 70\sqrt{7} and -70\sqrt{7} to get 0.
5
Divide -945 by -189 to get 5.