Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{5}-4\sqrt{3}\right)\left(-1-\sqrt{3}\right)}{\left(-1+\sqrt{3}\right)\left(-1-\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{5}-4\sqrt{3}}{-1+\sqrt{3}} by multiplying numerator and denominator by -1-\sqrt{3}.
\frac{\left(2\sqrt{5}-4\sqrt{3}\right)\left(-1-\sqrt{3}\right)}{\left(-1\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(-1+\sqrt{3}\right)\left(-1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{5}-4\sqrt{3}\right)\left(-1-\sqrt{3}\right)}{1-3}
Square -1. Square \sqrt{3}.
\frac{\left(2\sqrt{5}-4\sqrt{3}\right)\left(-1-\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
\frac{-2\sqrt{5}-2\sqrt{3}\sqrt{5}+4\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{-2}
Apply the distributive property by multiplying each term of 2\sqrt{5}-4\sqrt{3} by each term of -1-\sqrt{3}.
\frac{-2\sqrt{5}-2\sqrt{15}+4\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{-2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{-2\sqrt{5}-2\sqrt{15}+4\sqrt{3}+4\times 3}{-2}
The square of \sqrt{3} is 3.
\frac{-2\sqrt{5}-2\sqrt{15}+4\sqrt{3}+12}{-2}
Multiply 4 and 3 to get 12.
\sqrt{5}+\sqrt{15}-2\sqrt{3}-6
Divide each term of -2\sqrt{5}-2\sqrt{15}+4\sqrt{3}+12 by -2 to get \sqrt{5}+\sqrt{15}-2\sqrt{3}-6.