Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{5}+1\right)\left(2\sqrt{5}+1\right)}{\left(2\sqrt{5}-1\right)\left(2\sqrt{5}+1\right)}
Rationalize the denominator of \frac{2\sqrt{5}+1}{2\sqrt{5}-1} by multiplying numerator and denominator by 2\sqrt{5}+1.
\frac{\left(2\sqrt{5}+1\right)\left(2\sqrt{5}+1\right)}{\left(2\sqrt{5}\right)^{2}-1^{2}}
Consider \left(2\sqrt{5}-1\right)\left(2\sqrt{5}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{5}+1\right)^{2}}{\left(2\sqrt{5}\right)^{2}-1^{2}}
Multiply 2\sqrt{5}+1 and 2\sqrt{5}+1 to get \left(2\sqrt{5}+1\right)^{2}.
\frac{4\left(\sqrt{5}\right)^{2}+4\sqrt{5}+1}{\left(2\sqrt{5}\right)^{2}-1^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+1\right)^{2}.
\frac{4\times 5+4\sqrt{5}+1}{\left(2\sqrt{5}\right)^{2}-1^{2}}
The square of \sqrt{5} is 5.
\frac{20+4\sqrt{5}+1}{\left(2\sqrt{5}\right)^{2}-1^{2}}
Multiply 4 and 5 to get 20.
\frac{21+4\sqrt{5}}{\left(2\sqrt{5}\right)^{2}-1^{2}}
Add 20 and 1 to get 21.
\frac{21+4\sqrt{5}}{2^{2}\left(\sqrt{5}\right)^{2}-1^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{21+4\sqrt{5}}{4\left(\sqrt{5}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{21+4\sqrt{5}}{4\times 5-1^{2}}
The square of \sqrt{5} is 5.
\frac{21+4\sqrt{5}}{20-1^{2}}
Multiply 4 and 5 to get 20.
\frac{21+4\sqrt{5}}{20-1}
Calculate 1 to the power of 2 and get 1.
\frac{21+4\sqrt{5}}{19}
Subtract 1 from 20 to get 19.