Evaluate
\frac{5\sqrt{5}-11}{2}\approx 0.090169944
Factor
\frac{5 \sqrt{5} - 11}{2} = 0.09016994374947451
Share
Copied to clipboard
\frac{2\times 2\sqrt{10}-8\sqrt{2}}{2\sqrt{10}+2\sqrt{18}}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\frac{4\sqrt{10}-8\sqrt{2}}{2\sqrt{10}+2\sqrt{18}}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{10}-8\sqrt{2}}{2\sqrt{10}+2\times 3\sqrt{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{4\sqrt{10}-8\sqrt{2}}{2\sqrt{10}+6\sqrt{2}}
Multiply 2 and 3 to get 6.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{\left(2\sqrt{10}+6\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}
Rationalize the denominator of \frac{4\sqrt{10}-8\sqrt{2}}{2\sqrt{10}+6\sqrt{2}} by multiplying numerator and denominator by 2\sqrt{10}-6\sqrt{2}.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{\left(2\sqrt{10}\right)^{2}-\left(6\sqrt{2}\right)^{2}}
Consider \left(2\sqrt{10}+6\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{2^{2}\left(\sqrt{10}\right)^{2}-\left(6\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{10}\right)^{2}.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{4\left(\sqrt{10}\right)^{2}-\left(6\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{4\times 10-\left(6\sqrt{2}\right)^{2}}
The square of \sqrt{10} is 10.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{40-\left(6\sqrt{2}\right)^{2}}
Multiply 4 and 10 to get 40.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{40-6^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(6\sqrt{2}\right)^{2}.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{40-36\left(\sqrt{2}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{40-36\times 2}
The square of \sqrt{2} is 2.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{40-72}
Multiply 36 and 2 to get 72.
\frac{\left(4\sqrt{10}-8\sqrt{2}\right)\left(2\sqrt{10}-6\sqrt{2}\right)}{-32}
Subtract 72 from 40 to get -32.
\frac{8\left(\sqrt{10}\right)^{2}-24\sqrt{2}\sqrt{10}-16\sqrt{10}\sqrt{2}+48\left(\sqrt{2}\right)^{2}}{-32}
Apply the distributive property by multiplying each term of 4\sqrt{10}-8\sqrt{2} by each term of 2\sqrt{10}-6\sqrt{2}.
\frac{8\times 10-24\sqrt{2}\sqrt{10}-16\sqrt{10}\sqrt{2}+48\left(\sqrt{2}\right)^{2}}{-32}
The square of \sqrt{10} is 10.
\frac{80-24\sqrt{2}\sqrt{10}-16\sqrt{10}\sqrt{2}+48\left(\sqrt{2}\right)^{2}}{-32}
Multiply 8 and 10 to get 80.
\frac{80-24\sqrt{2}\sqrt{2}\sqrt{5}-16\sqrt{10}\sqrt{2}+48\left(\sqrt{2}\right)^{2}}{-32}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{80-24\times 2\sqrt{5}-16\sqrt{10}\sqrt{2}+48\left(\sqrt{2}\right)^{2}}{-32}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{80-48\sqrt{5}-16\sqrt{10}\sqrt{2}+48\left(\sqrt{2}\right)^{2}}{-32}
Multiply -24 and 2 to get -48.
\frac{80-48\sqrt{5}-16\sqrt{2}\sqrt{5}\sqrt{2}+48\left(\sqrt{2}\right)^{2}}{-32}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\frac{80-48\sqrt{5}-16\times 2\sqrt{5}+48\left(\sqrt{2}\right)^{2}}{-32}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{80-48\sqrt{5}-32\sqrt{5}+48\left(\sqrt{2}\right)^{2}}{-32}
Multiply -16 and 2 to get -32.
\frac{80-80\sqrt{5}+48\left(\sqrt{2}\right)^{2}}{-32}
Combine -48\sqrt{5} and -32\sqrt{5} to get -80\sqrt{5}.
\frac{80-80\sqrt{5}+48\times 2}{-32}
The square of \sqrt{2} is 2.
\frac{80-80\sqrt{5}+96}{-32}
Multiply 48 and 2 to get 96.
\frac{176-80\sqrt{5}}{-32}
Add 80 and 96 to get 176.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}