Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{3k^{2}\left(k^{2}+1\right)}=4k^{2}+1
Multiply both sides of the equation by 4k^{2}+1.
2\sqrt{3k^{4}+3k^{2}}=4k^{2}+1
Use the distributive property to multiply 3k^{2} by k^{2}+1.
2\sqrt{3k^{4}+3k^{2}}-4k^{2}=1
Subtract 4k^{2} from both sides.
2\sqrt{3k^{4}+3k^{2}}=1+4k^{2}
Subtract -4k^{2} from both sides of the equation.
\left(2\sqrt{3k^{4}+3k^{2}}\right)^{2}=\left(4k^{2}+1\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{3k^{4}+3k^{2}}\right)^{2}=\left(4k^{2}+1\right)^{2}
Expand \left(2\sqrt{3k^{4}+3k^{2}}\right)^{2}.
4\left(\sqrt{3k^{4}+3k^{2}}\right)^{2}=\left(4k^{2}+1\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(3k^{4}+3k^{2}\right)=\left(4k^{2}+1\right)^{2}
Calculate \sqrt{3k^{4}+3k^{2}} to the power of 2 and get 3k^{4}+3k^{2}.
12k^{4}+12k^{2}=\left(4k^{2}+1\right)^{2}
Use the distributive property to multiply 4 by 3k^{4}+3k^{2}.
12k^{4}+12k^{2}=16\left(k^{2}\right)^{2}+8k^{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4k^{2}+1\right)^{2}.
12k^{4}+12k^{2}=16k^{4}+8k^{2}+1
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
12k^{4}+12k^{2}-16k^{4}=8k^{2}+1
Subtract 16k^{4} from both sides.
-4k^{4}+12k^{2}=8k^{2}+1
Combine 12k^{4} and -16k^{4} to get -4k^{4}.
-4k^{4}+12k^{2}-8k^{2}=1
Subtract 8k^{2} from both sides.
-4k^{4}+4k^{2}=1
Combine 12k^{2} and -8k^{2} to get 4k^{2}.
-4k^{4}+4k^{2}-1=0
Subtract 1 from both sides.
-4t^{2}+4t-1=0
Substitute t for k^{2}.
t=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\left(-1\right)}}{-4\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -4 for a, 4 for b, and -1 for c in the quadratic formula.
t=\frac{-4±0}{-8}
Do the calculations.
t=\frac{1}{2}
Solutions are the same.
k=-\frac{\sqrt{2}}{2} k=\frac{\sqrt{2}}{2}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.
\frac{2\sqrt{3\left(-\frac{\sqrt{2}}{2}\right)^{2}\left(\left(-\frac{\sqrt{2}}{2}\right)^{2}+1\right)}}{4\left(-\frac{\sqrt{2}}{2}\right)^{2}+1}=1
Substitute -\frac{\sqrt{2}}{2} for k in the equation \frac{2\sqrt{3k^{2}\left(k^{2}+1\right)}}{4k^{2}+1}=1.
1=1
Simplify. The value k=-\frac{\sqrt{2}}{2} satisfies the equation.
\frac{2\sqrt{3\times \left(\frac{\sqrt{2}}{2}\right)^{2}\left(\left(\frac{\sqrt{2}}{2}\right)^{2}+1\right)}}{4\times \left(\frac{\sqrt{2}}{2}\right)^{2}+1}=1
Substitute \frac{\sqrt{2}}{2} for k in the equation \frac{2\sqrt{3k^{2}\left(k^{2}+1\right)}}{4k^{2}+1}=1.
1=1
Simplify. The value k=\frac{\sqrt{2}}{2} satisfies the equation.
k=-\frac{\sqrt{2}}{2} k=\frac{\sqrt{2}}{2}
List all solutions of 2\sqrt{3k^{4}+3k^{2}}=4k^{2}+1.