Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{29}+3\times 6\sqrt{2}}{5\sqrt{75}-3\sqrt{48}}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\frac{2\sqrt{29}+18\sqrt{2}}{5\sqrt{75}-3\sqrt{48}}
Multiply 3 and 6 to get 18.
\frac{2\sqrt{29}+18\sqrt{2}}{5\times 5\sqrt{3}-3\sqrt{48}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{2\sqrt{29}+18\sqrt{2}}{25\sqrt{3}-3\sqrt{48}}
Multiply 5 and 5 to get 25.
\frac{2\sqrt{29}+18\sqrt{2}}{25\sqrt{3}-3\times 4\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{2\sqrt{29}+18\sqrt{2}}{25\sqrt{3}-12\sqrt{3}}
Multiply -3 and 4 to get -12.
\frac{2\sqrt{29}+18\sqrt{2}}{13\sqrt{3}}
Combine 25\sqrt{3} and -12\sqrt{3} to get 13\sqrt{3}.
\frac{\left(2\sqrt{29}+18\sqrt{2}\right)\sqrt{3}}{13\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{29}+18\sqrt{2}}{13\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(2\sqrt{29}+18\sqrt{2}\right)\sqrt{3}}{13\times 3}
The square of \sqrt{3} is 3.
\frac{\left(2\sqrt{29}+18\sqrt{2}\right)\sqrt{3}}{39}
Multiply 13 and 3 to get 39.
\frac{2\sqrt{29}\sqrt{3}+18\sqrt{2}\sqrt{3}}{39}
Use the distributive property to multiply 2\sqrt{29}+18\sqrt{2} by \sqrt{3}.
\frac{2\sqrt{87}+18\sqrt{2}\sqrt{3}}{39}
To multiply \sqrt{29} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{87}+18\sqrt{6}}{39}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.