Evaluate
\frac{1}{19}\approx 0.052631579
Factor
\frac{1}{19} = 0.05263157894736842
Share
Copied to clipboard
\frac{\frac{6+4}{3}-3}{\frac{2\times 3+4}{3}+3}
Multiply 2 and 3 to get 6.
\frac{\frac{10}{3}-3}{\frac{2\times 3+4}{3}+3}
Add 6 and 4 to get 10.
\frac{\frac{10}{3}-\frac{9}{3}}{\frac{2\times 3+4}{3}+3}
Convert 3 to fraction \frac{9}{3}.
\frac{\frac{10-9}{3}}{\frac{2\times 3+4}{3}+3}
Since \frac{10}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{3}}{\frac{2\times 3+4}{3}+3}
Subtract 9 from 10 to get 1.
\frac{\frac{1}{3}}{\frac{6+4}{3}+3}
Multiply 2 and 3 to get 6.
\frac{\frac{1}{3}}{\frac{10}{3}+3}
Add 6 and 4 to get 10.
\frac{\frac{1}{3}}{\frac{10}{3}+\frac{9}{3}}
Convert 3 to fraction \frac{9}{3}.
\frac{\frac{1}{3}}{\frac{10+9}{3}}
Since \frac{10}{3} and \frac{9}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{3}}{\frac{19}{3}}
Add 10 and 9 to get 19.
\frac{1}{3}\times \frac{3}{19}
Divide \frac{1}{3} by \frac{19}{3} by multiplying \frac{1}{3} by the reciprocal of \frac{19}{3}.
\frac{1\times 3}{3\times 19}
Multiply \frac{1}{3} times \frac{3}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{19}
Cancel out 3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}