Evaluate
\frac{15750711}{1492120}\approx 10.555927807
Factor
\frac{71 \cdot 3 ^ {2} \cdot 157 ^ {2}}{5 \cdot 7 \cdot 2 ^ {3} \cdot 73 ^ {2}} = 10\frac{829511}{1492120} = 10.555927807414953
Share
Copied to clipboard
\frac{4\times 3.14\times 3.14\times 100\left(1.004+\frac{0.2285}{2}\right)}{20.44^{2}}
Multiply 2 and 2 to get 4.
\frac{12.56\times 3.14\times 100\left(1.004+\frac{0.2285}{2}\right)}{20.44^{2}}
Multiply 4 and 3.14 to get 12.56.
\frac{39.4384\times 100\left(1.004+\frac{0.2285}{2}\right)}{20.44^{2}}
Multiply 12.56 and 3.14 to get 39.4384.
\frac{3943.84\left(1.004+\frac{0.2285}{2}\right)}{20.44^{2}}
Multiply 39.4384 and 100 to get 3943.84.
\frac{3943.84\left(1.004+\frac{2285}{20000}\right)}{20.44^{2}}
Expand \frac{0.2285}{2} by multiplying both numerator and the denominator by 10000.
\frac{3943.84\left(1.004+\frac{457}{4000}\right)}{20.44^{2}}
Reduce the fraction \frac{2285}{20000} to lowest terms by extracting and canceling out 5.
\frac{3943.84\left(\frac{251}{250}+\frac{457}{4000}\right)}{20.44^{2}}
Convert decimal number 1.004 to fraction \frac{1004}{1000}. Reduce the fraction \frac{1004}{1000} to lowest terms by extracting and canceling out 4.
\frac{3943.84\left(\frac{4016}{4000}+\frac{457}{4000}\right)}{20.44^{2}}
Least common multiple of 250 and 4000 is 4000. Convert \frac{251}{250} and \frac{457}{4000} to fractions with denominator 4000.
\frac{3943.84\times \frac{4016+457}{4000}}{20.44^{2}}
Since \frac{4016}{4000} and \frac{457}{4000} have the same denominator, add them by adding their numerators.
\frac{3943.84\times \frac{4473}{4000}}{20.44^{2}}
Add 4016 and 457 to get 4473.
\frac{\frac{98596}{25}\times \frac{4473}{4000}}{20.44^{2}}
Convert decimal number 3943.84 to fraction \frac{394384}{100}. Reduce the fraction \frac{394384}{100} to lowest terms by extracting and canceling out 4.
\frac{\frac{98596\times 4473}{25\times 4000}}{20.44^{2}}
Multiply \frac{98596}{25} times \frac{4473}{4000} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{441019908}{100000}}{20.44^{2}}
Do the multiplications in the fraction \frac{98596\times 4473}{25\times 4000}.
\frac{\frac{110254977}{25000}}{20.44^{2}}
Reduce the fraction \frac{441019908}{100000} to lowest terms by extracting and canceling out 4.
\frac{\frac{110254977}{25000}}{417.7936}
Calculate 20.44 to the power of 2 and get 417.7936.
\frac{110254977}{25000\times 417.7936}
Express \frac{\frac{110254977}{25000}}{417.7936} as a single fraction.
\frac{110254977}{10444840}
Multiply 25000 and 417.7936 to get 10444840.
\frac{15750711}{1492120}
Reduce the fraction \frac{110254977}{10444840} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}