Evaluate
\frac{25}{125004}\approx 0.000199994
Factor
\frac{5 ^ {2}}{2 ^ {2} \cdot 3 \cdot 11 \cdot 947} = 0.00019999360020479345
Share
Copied to clipboard
\frac{2\times 10^{-4}}{1+16\times 10^{-6}\times 2}
Multiply 2 and 1 to get 2.
\frac{2\times \frac{1}{10000}}{1+16\times 10^{-6}\times 2}
Calculate 10 to the power of -4 and get \frac{1}{10000}.
\frac{\frac{1}{5000}}{1+16\times 10^{-6}\times 2}
Multiply 2 and \frac{1}{10000} to get \frac{1}{5000}.
\frac{\frac{1}{5000}}{1+16\times \frac{1}{1000000}\times 2}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{\frac{1}{5000}}{1+\frac{1}{62500}\times 2}
Multiply 16 and \frac{1}{1000000} to get \frac{1}{62500}.
\frac{\frac{1}{5000}}{1+\frac{1}{31250}}
Multiply \frac{1}{62500} and 2 to get \frac{1}{31250}.
\frac{\frac{1}{5000}}{\frac{31251}{31250}}
Add 1 and \frac{1}{31250} to get \frac{31251}{31250}.
\frac{1}{5000}\times \frac{31250}{31251}
Divide \frac{1}{5000} by \frac{31251}{31250} by multiplying \frac{1}{5000} by the reciprocal of \frac{31251}{31250}.
\frac{25}{125004}
Multiply \frac{1}{5000} and \frac{31250}{31251} to get \frac{25}{125004}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}