\frac{ 2 \% -6 \% }{ 2 \% (1-2 \% ) }
Evaluate
-\frac{100}{49}\approx -2.040816327
Factor
-\frac{100}{49} = -2\frac{2}{49} = -2.0408163265306123
Share
Copied to clipboard
\frac{\frac{1}{50}-\frac{6}{100}}{\frac{2}{100}\left(1-\frac{2}{100}\right)}
Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{50}-\frac{3}{50}}{\frac{2}{100}\left(1-\frac{2}{100}\right)}
Reduce the fraction \frac{6}{100} to lowest terms by extracting and canceling out 2.
\frac{\frac{1-3}{50}}{\frac{2}{100}\left(1-\frac{2}{100}\right)}
Since \frac{1}{50} and \frac{3}{50} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-2}{50}}{\frac{2}{100}\left(1-\frac{2}{100}\right)}
Subtract 3 from 1 to get -2.
\frac{-\frac{1}{25}}{\frac{2}{100}\left(1-\frac{2}{100}\right)}
Reduce the fraction \frac{-2}{50} to lowest terms by extracting and canceling out 2.
\frac{-\frac{1}{25}}{\frac{1}{50}\left(1-\frac{2}{100}\right)}
Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
\frac{-\frac{1}{25}}{\frac{1}{50}\left(1-\frac{1}{50}\right)}
Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
\frac{-\frac{1}{25}}{\frac{1}{50}\left(\frac{50}{50}-\frac{1}{50}\right)}
Convert 1 to fraction \frac{50}{50}.
\frac{-\frac{1}{25}}{\frac{1}{50}\times \frac{50-1}{50}}
Since \frac{50}{50} and \frac{1}{50} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{25}}{\frac{1}{50}\times \frac{49}{50}}
Subtract 1 from 50 to get 49.
\frac{-\frac{1}{25}}{\frac{1\times 49}{50\times 50}}
Multiply \frac{1}{50} times \frac{49}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{1}{25}}{\frac{49}{2500}}
Do the multiplications in the fraction \frac{1\times 49}{50\times 50}.
-\frac{1}{25}\times \frac{2500}{49}
Divide -\frac{1}{25} by \frac{49}{2500} by multiplying -\frac{1}{25} by the reciprocal of \frac{49}{2500}.
\frac{-2500}{25\times 49}
Multiply -\frac{1}{25} times \frac{2500}{49} by multiplying numerator times numerator and denominator times denominator.
\frac{-2500}{1225}
Do the multiplications in the fraction \frac{-2500}{25\times 49}.
-\frac{100}{49}
Reduce the fraction \frac{-2500}{1225} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}