Solve for y
y = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Graph
Share
Copied to clipboard
\left(y+6\right)\times 2+\left(y-2\right)\times 3=0
Variable y cannot be equal to any of the values -6,2 since division by zero is not defined. Multiply both sides of the equation by \left(y-2\right)\left(y+6\right), the least common multiple of y-2,y+6.
2y+12+\left(y-2\right)\times 3=0
Use the distributive property to multiply y+6 by 2.
2y+12+3y-6=0
Use the distributive property to multiply y-2 by 3.
5y+12-6=0
Combine 2y and 3y to get 5y.
5y+6=0
Subtract 6 from 12 to get 6.
5y=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
y=\frac{-6}{5}
Divide both sides by 5.
y=-\frac{6}{5}
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}