Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)\times 2+\left(x-3\right)\times 3=3\left(x-3\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right), the least common multiple of x-3,x-2.
2x-4+\left(x-3\right)\times 3=3\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-2 by 2.
2x-4+3x-9=3\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-3 by 3.
5x-4-9=3\left(x-3\right)\left(x-2\right)
Combine 2x and 3x to get 5x.
5x-13=3\left(x-3\right)\left(x-2\right)
Subtract 9 from -4 to get -13.
5x-13=\left(3x-9\right)\left(x-2\right)
Use the distributive property to multiply 3 by x-3.
5x-13=3x^{2}-15x+18
Use the distributive property to multiply 3x-9 by x-2 and combine like terms.
5x-13-3x^{2}=-15x+18
Subtract 3x^{2} from both sides.
5x-13-3x^{2}+15x=18
Add 15x to both sides.
20x-13-3x^{2}=18
Combine 5x and 15x to get 20x.
20x-13-3x^{2}-18=0
Subtract 18 from both sides.
20x-31-3x^{2}=0
Subtract 18 from -13 to get -31.
-3x^{2}+20x-31=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-3\right)\left(-31\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 20 for b, and -31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-3\right)\left(-31\right)}}{2\left(-3\right)}
Square 20.
x=\frac{-20±\sqrt{400+12\left(-31\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-20±\sqrt{400-372}}{2\left(-3\right)}
Multiply 12 times -31.
x=\frac{-20±\sqrt{28}}{2\left(-3\right)}
Add 400 to -372.
x=\frac{-20±2\sqrt{7}}{2\left(-3\right)}
Take the square root of 28.
x=\frac{-20±2\sqrt{7}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{7}-20}{-6}
Now solve the equation x=\frac{-20±2\sqrt{7}}{-6} when ± is plus. Add -20 to 2\sqrt{7}.
x=\frac{10-\sqrt{7}}{3}
Divide -20+2\sqrt{7} by -6.
x=\frac{-2\sqrt{7}-20}{-6}
Now solve the equation x=\frac{-20±2\sqrt{7}}{-6} when ± is minus. Subtract 2\sqrt{7} from -20.
x=\frac{\sqrt{7}+10}{3}
Divide -20-2\sqrt{7} by -6.
x=\frac{10-\sqrt{7}}{3} x=\frac{\sqrt{7}+10}{3}
The equation is now solved.
\left(x-2\right)\times 2+\left(x-3\right)\times 3=3\left(x-3\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right), the least common multiple of x-3,x-2.
2x-4+\left(x-3\right)\times 3=3\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-2 by 2.
2x-4+3x-9=3\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-3 by 3.
5x-4-9=3\left(x-3\right)\left(x-2\right)
Combine 2x and 3x to get 5x.
5x-13=3\left(x-3\right)\left(x-2\right)
Subtract 9 from -4 to get -13.
5x-13=\left(3x-9\right)\left(x-2\right)
Use the distributive property to multiply 3 by x-3.
5x-13=3x^{2}-15x+18
Use the distributive property to multiply 3x-9 by x-2 and combine like terms.
5x-13-3x^{2}=-15x+18
Subtract 3x^{2} from both sides.
5x-13-3x^{2}+15x=18
Add 15x to both sides.
20x-13-3x^{2}=18
Combine 5x and 15x to get 20x.
20x-3x^{2}=18+13
Add 13 to both sides.
20x-3x^{2}=31
Add 18 and 13 to get 31.
-3x^{2}+20x=31
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+20x}{-3}=\frac{31}{-3}
Divide both sides by -3.
x^{2}+\frac{20}{-3}x=\frac{31}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{20}{3}x=\frac{31}{-3}
Divide 20 by -3.
x^{2}-\frac{20}{3}x=-\frac{31}{3}
Divide 31 by -3.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-\frac{31}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{31}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{7}{9}
Add -\frac{31}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{7}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{7}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{\sqrt{7}}{3} x-\frac{10}{3}=-\frac{\sqrt{7}}{3}
Simplify.
x=\frac{\sqrt{7}+10}{3} x=\frac{10-\sqrt{7}}{3}
Add \frac{10}{3} to both sides of the equation.