Factor
\frac{\left(-14x-5\right)\left(3x-2\right)}{35}
Evaluate
-\frac{6x^{2}}{5}+\frac{13x}{35}+\frac{2}{7}
Graph
Quiz
Polynomial
5 problems similar to:
\frac{ 2 }{ 7 } + \frac{ 13 }{ 35 } x- \frac{ 6 }{ 5 } { x }^{ 2 }
Share
Copied to clipboard
\frac{10+13x-42x^{2}}{35}
Factor out \frac{1}{35}.
-42x^{2}+13x+10
Consider 10+13x-42x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=13 ab=-42\times 10=-420
Factor the expression by grouping. First, the expression needs to be rewritten as -42x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
-1,420 -2,210 -3,140 -4,105 -5,84 -6,70 -7,60 -10,42 -12,35 -14,30 -15,28 -20,21
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -420.
-1+420=419 -2+210=208 -3+140=137 -4+105=101 -5+84=79 -6+70=64 -7+60=53 -10+42=32 -12+35=23 -14+30=16 -15+28=13 -20+21=1
Calculate the sum for each pair.
a=28 b=-15
The solution is the pair that gives sum 13.
\left(-42x^{2}+28x\right)+\left(-15x+10\right)
Rewrite -42x^{2}+13x+10 as \left(-42x^{2}+28x\right)+\left(-15x+10\right).
-14x\left(3x-2\right)-5\left(3x-2\right)
Factor out -14x in the first and -5 in the second group.
\left(3x-2\right)\left(-14x-5\right)
Factor out common term 3x-2 by using distributive property.
\frac{\left(3x-2\right)\left(-14x-5\right)}{35}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}