Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{5-\sqrt{3}} by multiplying numerator and denominator by 5+\sqrt{3}.
\frac{2\left(5+\sqrt{3}\right)}{5^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+\sqrt{3}\right)}{25-3}
Square 5. Square \sqrt{3}.
\frac{2\left(5+\sqrt{3}\right)}{22}
Subtract 3 from 25 to get 22.
\frac{1}{11}\left(5+\sqrt{3}\right)
Divide 2\left(5+\sqrt{3}\right) by 22 to get \frac{1}{11}\left(5+\sqrt{3}\right).
\frac{1}{11}\times 5+\frac{1}{11}\sqrt{3}
Use the distributive property to multiply \frac{1}{11} by 5+\sqrt{3}.
\frac{5}{11}+\frac{1}{11}\sqrt{3}
Multiply \frac{1}{11} and 5 to get \frac{5}{11}.