Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{5+665\times 3\sqrt{5}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{2}{5+1995\sqrt{5}}
Multiply 665 and 3 to get 1995.
\frac{2\left(5-1995\sqrt{5}\right)}{\left(5+1995\sqrt{5}\right)\left(5-1995\sqrt{5}\right)}
Rationalize the denominator of \frac{2}{5+1995\sqrt{5}} by multiplying numerator and denominator by 5-1995\sqrt{5}.
\frac{2\left(5-1995\sqrt{5}\right)}{5^{2}-\left(1995\sqrt{5}\right)^{2}}
Consider \left(5+1995\sqrt{5}\right)\left(5-1995\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5-1995\sqrt{5}\right)}{25-\left(1995\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{2\left(5-1995\sqrt{5}\right)}{25-1995^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(1995\sqrt{5}\right)^{2}.
\frac{2\left(5-1995\sqrt{5}\right)}{25-3980025\left(\sqrt{5}\right)^{2}}
Calculate 1995 to the power of 2 and get 3980025.
\frac{2\left(5-1995\sqrt{5}\right)}{25-3980025\times 5}
The square of \sqrt{5} is 5.
\frac{2\left(5-1995\sqrt{5}\right)}{25-19900125}
Multiply 3980025 and 5 to get 19900125.
\frac{2\left(5-1995\sqrt{5}\right)}{-19900100}
Subtract 19900125 from 25 to get -19900100.
-\frac{1}{9950050}\left(5-1995\sqrt{5}\right)
Divide 2\left(5-1995\sqrt{5}\right) by -19900100 to get -\frac{1}{9950050}\left(5-1995\sqrt{5}\right).
-\frac{1}{9950050}\times 5-\frac{1}{9950050}\left(-1995\right)\sqrt{5}
Use the distributive property to multiply -\frac{1}{9950050} by 5-1995\sqrt{5}.
\frac{-5}{9950050}-\frac{1}{9950050}\left(-1995\right)\sqrt{5}
Express -\frac{1}{9950050}\times 5 as a single fraction.
-\frac{1}{1990010}-\frac{1}{9950050}\left(-1995\right)\sqrt{5}
Reduce the fraction \frac{-5}{9950050} to lowest terms by extracting and canceling out 5.
-\frac{1}{1990010}+\frac{-\left(-1995\right)}{9950050}\sqrt{5}
Express -\frac{1}{9950050}\left(-1995\right) as a single fraction.
-\frac{1}{1990010}+\frac{1995}{9950050}\sqrt{5}
Multiply -1 and -1995 to get 1995.
-\frac{1}{1990010}+\frac{399}{1990010}\sqrt{5}
Reduce the fraction \frac{1995}{9950050} to lowest terms by extracting and canceling out 5.