Solve for x
x=\frac{1}{10}=0.1
x=0
Graph
Share
Copied to clipboard
x\left(\frac{2}{5}-4x\right)=0
Factor out x.
x=0 x=\frac{1}{10}
To find equation solutions, solve x=0 and \frac{2}{5}-4x=0.
-4x^{2}+\frac{2}{5}x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{2}{5}±\sqrt{\left(\frac{2}{5}\right)^{2}}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, \frac{2}{5} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{5}±\frac{2}{5}}{2\left(-4\right)}
Take the square root of \left(\frac{2}{5}\right)^{2}.
x=\frac{-\frac{2}{5}±\frac{2}{5}}{-8}
Multiply 2 times -4.
x=\frac{0}{-8}
Now solve the equation x=\frac{-\frac{2}{5}±\frac{2}{5}}{-8} when ± is plus. Add -\frac{2}{5} to \frac{2}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -8.
x=-\frac{\frac{4}{5}}{-8}
Now solve the equation x=\frac{-\frac{2}{5}±\frac{2}{5}}{-8} when ± is minus. Subtract \frac{2}{5} from -\frac{2}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{10}
Divide -\frac{4}{5} by -8.
x=0 x=\frac{1}{10}
The equation is now solved.
-4x^{2}+\frac{2}{5}x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+\frac{2}{5}x}{-4}=\frac{0}{-4}
Divide both sides by -4.
x^{2}+\frac{\frac{2}{5}}{-4}x=\frac{0}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{1}{10}x=\frac{0}{-4}
Divide \frac{2}{5} by -4.
x^{2}-\frac{1}{10}x=0
Divide 0 by -4.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=\left(-\frac{1}{20}\right)^{2}
Divide -\frac{1}{10}, the coefficient of the x term, by 2 to get -\frac{1}{20}. Then add the square of -\frac{1}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{1}{400}
Square -\frac{1}{20} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{20}\right)^{2}=\frac{1}{400}
Factor x^{2}-\frac{1}{10}x+\frac{1}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{\frac{1}{400}}
Take the square root of both sides of the equation.
x-\frac{1}{20}=\frac{1}{20} x-\frac{1}{20}=-\frac{1}{20}
Simplify.
x=\frac{1}{10} x=0
Add \frac{1}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}