Solve for x
x>13
Graph
Share
Copied to clipboard
\frac{2}{5}\times 3+\frac{2}{5}\left(-1\right)x+2<-2
Use the distributive property to multiply \frac{2}{5} by 3-x.
\frac{2\times 3}{5}+\frac{2}{5}\left(-1\right)x+2<-2
Express \frac{2}{5}\times 3 as a single fraction.
\frac{6}{5}+\frac{2}{5}\left(-1\right)x+2<-2
Multiply 2 and 3 to get 6.
\frac{6}{5}-\frac{2}{5}x+2<-2
Multiply \frac{2}{5} and -1 to get -\frac{2}{5}.
\frac{6}{5}-\frac{2}{5}x+\frac{10}{5}<-2
Convert 2 to fraction \frac{10}{5}.
\frac{6+10}{5}-\frac{2}{5}x<-2
Since \frac{6}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
\frac{16}{5}-\frac{2}{5}x<-2
Add 6 and 10 to get 16.
-\frac{2}{5}x<-2-\frac{16}{5}
Subtract \frac{16}{5} from both sides.
-\frac{2}{5}x<-\frac{10}{5}-\frac{16}{5}
Convert -2 to fraction -\frac{10}{5}.
-\frac{2}{5}x<\frac{-10-16}{5}
Since -\frac{10}{5} and \frac{16}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{5}x<-\frac{26}{5}
Subtract 16 from -10 to get -26.
x>-\frac{26}{5}\left(-\frac{5}{2}\right)
Multiply both sides by -\frac{5}{2}, the reciprocal of -\frac{2}{5}. Since -\frac{2}{5} is negative, the inequality direction is changed.
x>\frac{-26\left(-5\right)}{5\times 2}
Multiply -\frac{26}{5} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
x>\frac{130}{10}
Do the multiplications in the fraction \frac{-26\left(-5\right)}{5\times 2}.
x>13
Divide 130 by 10 to get 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}