Verify
true
Share
Copied to clipboard
\frac{2}{5}<\frac{5}{25}+\frac{6}{25}\text{ and }\frac{1}{5}+\frac{6}{25}<\frac{3}{5}
Least common multiple of 5 and 25 is 25. Convert \frac{1}{5} and \frac{6}{25} to fractions with denominator 25.
\frac{2}{5}<\frac{5+6}{25}\text{ and }\frac{1}{5}+\frac{6}{25}<\frac{3}{5}
Since \frac{5}{25} and \frac{6}{25} have the same denominator, add them by adding their numerators.
\frac{2}{5}<\frac{11}{25}\text{ and }\frac{1}{5}+\frac{6}{25}<\frac{3}{5}
Add 5 and 6 to get 11.
\frac{10}{25}<\frac{11}{25}\text{ and }\frac{1}{5}+\frac{6}{25}<\frac{3}{5}
Least common multiple of 5 and 25 is 25. Convert \frac{2}{5} and \frac{11}{25} to fractions with denominator 25.
\text{true}\text{ and }\frac{1}{5}+\frac{6}{25}<\frac{3}{5}
Compare \frac{10}{25} and \frac{11}{25}.
\text{true}\text{ and }\frac{5}{25}+\frac{6}{25}<\frac{3}{5}
Least common multiple of 5 and 25 is 25. Convert \frac{1}{5} and \frac{6}{25} to fractions with denominator 25.
\text{true}\text{ and }\frac{5+6}{25}<\frac{3}{5}
Since \frac{5}{25} and \frac{6}{25} have the same denominator, add them by adding their numerators.
\text{true}\text{ and }\frac{11}{25}<\frac{3}{5}
Add 5 and 6 to get 11.
\text{true}\text{ and }\frac{11}{25}<\frac{15}{25}
Least common multiple of 25 and 5 is 25. Convert \frac{11}{25} and \frac{3}{5} to fractions with denominator 25.
\text{true}\text{ and }\text{true}
Compare \frac{11}{25} and \frac{15}{25}.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}