Skip to main content
Verify
true
Tick mark Image

Share

\frac{2}{4-\sqrt{5}}\times 1=\frac{2\left(4+\sqrt{5}\right)}{16-5}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{16-5}=\frac{8+2\sqrt{5}}{11}
Divide 4+\sqrt{5} by 4+\sqrt{5} to get 1.
\frac{2\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}\times 1=\frac{2\left(4+\sqrt{5}\right)}{16-5}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{16-5}=\frac{8+2\sqrt{5}}{11}
Rationalize the denominator of \frac{2}{4-\sqrt{5}} by multiplying numerator and denominator by 4+\sqrt{5}.
\frac{2\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}\times 1=\frac{2\left(4+\sqrt{5}\right)}{16-5}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{16-5}=\frac{8+2\sqrt{5}}{11}
Consider \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(4+\sqrt{5}\right)}{16-5}\times 1=\frac{2\left(4+\sqrt{5}\right)}{16-5}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{16-5}=\frac{8+2\sqrt{5}}{11}
Square 4. Square \sqrt{5}.
\frac{2\left(4+\sqrt{5}\right)}{11}\times 1=\frac{2\left(4+\sqrt{5}\right)}{16-5}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{16-5}=\frac{8+2\sqrt{5}}{11}
Subtract 5 from 16 to get 11.
\frac{2\left(4+\sqrt{5}\right)}{11}=\frac{2\left(4+\sqrt{5}\right)}{16-5}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{16-5}=\frac{8+2\sqrt{5}}{11}
Express \frac{2\left(4+\sqrt{5}\right)}{11}\times 1 as a single fraction.
\frac{2\left(4+\sqrt{5}\right)}{11}=\frac{2\left(4+\sqrt{5}\right)}{11}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{16-5}=\frac{8+2\sqrt{5}}{11}
Subtract 5 from 16 to get 11.
\frac{2\left(4+\sqrt{5}\right)}{11}=\frac{2\left(4+\sqrt{5}\right)}{11}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{11}=\frac{8+2\sqrt{5}}{11}
Subtract 5 from 16 to get 11.
\frac{8+2\sqrt{5}}{11}=\frac{2\left(4+\sqrt{5}\right)}{11}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{11}=\frac{8+2\sqrt{5}}{11}
Use the distributive property to multiply 2 by 4+\sqrt{5}.
\frac{8+2\sqrt{5}}{11}=\frac{8+2\sqrt{5}}{11}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{11}=\frac{8+2\sqrt{5}}{11}
Use the distributive property to multiply 2 by 4+\sqrt{5}.
\frac{8+2\sqrt{5}}{11}-\frac{8+2\sqrt{5}}{11}=0\text{ and }\frac{2\left(4+\sqrt{5}\right)}{11}=\frac{8+2\sqrt{5}}{11}
Subtract \frac{8+2\sqrt{5}}{11} from both sides.
0=0\text{ and }\frac{2\left(4+\sqrt{5}\right)}{11}=\frac{8+2\sqrt{5}}{11}
Combine \frac{8+2\sqrt{5}}{11} and -\frac{8+2\sqrt{5}}{11} to get 0.
\text{true}\text{ and }\frac{2\left(4+\sqrt{5}\right)}{11}=\frac{8+2\sqrt{5}}{11}
Compare 0 and 0.
\text{true}\text{ and }\frac{8+2\sqrt{5}}{11}=\frac{8+2\sqrt{5}}{11}
Use the distributive property to multiply 2 by 4+\sqrt{5}.
\text{true}\text{ and }\frac{8+2\sqrt{5}}{11}-\frac{8+2\sqrt{5}}{11}=0
Subtract \frac{8+2\sqrt{5}}{11} from both sides.
\text{true}\text{ and }0=0
Combine \frac{8+2\sqrt{5}}{11} and -\frac{8+2\sqrt{5}}{11} to get 0.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.