Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18x\left(-18x+5\right)^{-1}\times 2+1=21x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
36x\left(-18x+5\right)^{-1}+1=21x
Multiply 18 and 2 to get 36.
36x\left(-18x+5\right)^{-1}+1-21x=0
Subtract 21x from both sides.
-21x+36\times \frac{1}{-18x+5}x+1=0
Reorder the terms.
-21x\left(-18x+5\right)+36\times 1x-18x+5=0
Variable x cannot be equal to \frac{5}{18} since division by zero is not defined. Multiply both sides of the equation by -18x+5.
378x^{2}-105x+36\times 1x-18x+5=0
Use the distributive property to multiply -21x by -18x+5.
378x^{2}-105x+36x-18x+5=0
Multiply 36 and 1 to get 36.
378x^{2}-69x-18x+5=0
Combine -105x and 36x to get -69x.
378x^{2}-87x+5=0
Combine -69x and -18x to get -87x.
x=\frac{-\left(-87\right)±\sqrt{\left(-87\right)^{2}-4\times 378\times 5}}{2\times 378}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 378 for a, -87 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-87\right)±\sqrt{7569-4\times 378\times 5}}{2\times 378}
Square -87.
x=\frac{-\left(-87\right)±\sqrt{7569-1512\times 5}}{2\times 378}
Multiply -4 times 378.
x=\frac{-\left(-87\right)±\sqrt{7569-7560}}{2\times 378}
Multiply -1512 times 5.
x=\frac{-\left(-87\right)±\sqrt{9}}{2\times 378}
Add 7569 to -7560.
x=\frac{-\left(-87\right)±3}{2\times 378}
Take the square root of 9.
x=\frac{87±3}{2\times 378}
The opposite of -87 is 87.
x=\frac{87±3}{756}
Multiply 2 times 378.
x=\frac{90}{756}
Now solve the equation x=\frac{87±3}{756} when ± is plus. Add 87 to 3.
x=\frac{5}{42}
Reduce the fraction \frac{90}{756} to lowest terms by extracting and canceling out 18.
x=\frac{84}{756}
Now solve the equation x=\frac{87±3}{756} when ± is minus. Subtract 3 from 87.
x=\frac{1}{9}
Reduce the fraction \frac{84}{756} to lowest terms by extracting and canceling out 84.
x=\frac{5}{42} x=\frac{1}{9}
The equation is now solved.
18x\left(-18x+5\right)^{-1}\times 2+1=21x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x.
36x\left(-18x+5\right)^{-1}+1=21x
Multiply 18 and 2 to get 36.
36x\left(-18x+5\right)^{-1}+1-21x=0
Subtract 21x from both sides.
36x\left(-18x+5\right)^{-1}-21x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-21x+36\times \frac{1}{-18x+5}x=-1
Reorder the terms.
-21x\left(-18x+5\right)+36\times 1x=-\left(-18x+5\right)
Variable x cannot be equal to \frac{5}{18} since division by zero is not defined. Multiply both sides of the equation by -18x+5.
378x^{2}-105x+36\times 1x=-\left(-18x+5\right)
Use the distributive property to multiply -21x by -18x+5.
378x^{2}-105x+36x=-\left(-18x+5\right)
Multiply 36 and 1 to get 36.
378x^{2}-69x=-\left(-18x+5\right)
Combine -105x and 36x to get -69x.
378x^{2}-69x=18x-5
To find the opposite of -18x+5, find the opposite of each term.
378x^{2}-69x-18x=-5
Subtract 18x from both sides.
378x^{2}-87x=-5
Combine -69x and -18x to get -87x.
\frac{378x^{2}-87x}{378}=-\frac{5}{378}
Divide both sides by 378.
x^{2}+\left(-\frac{87}{378}\right)x=-\frac{5}{378}
Dividing by 378 undoes the multiplication by 378.
x^{2}-\frac{29}{126}x=-\frac{5}{378}
Reduce the fraction \frac{-87}{378} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{29}{126}x+\left(-\frac{29}{252}\right)^{2}=-\frac{5}{378}+\left(-\frac{29}{252}\right)^{2}
Divide -\frac{29}{126}, the coefficient of the x term, by 2 to get -\frac{29}{252}. Then add the square of -\frac{29}{252} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{29}{126}x+\frac{841}{63504}=-\frac{5}{378}+\frac{841}{63504}
Square -\frac{29}{252} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{29}{126}x+\frac{841}{63504}=\frac{1}{63504}
Add -\frac{5}{378} to \frac{841}{63504} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{29}{252}\right)^{2}=\frac{1}{63504}
Factor x^{2}-\frac{29}{126}x+\frac{841}{63504}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{252}\right)^{2}}=\sqrt{\frac{1}{63504}}
Take the square root of both sides of the equation.
x-\frac{29}{252}=\frac{1}{252} x-\frac{29}{252}=-\frac{1}{252}
Simplify.
x=\frac{5}{42} x=\frac{1}{9}
Add \frac{29}{252} to both sides of the equation.